ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Даны три попарно перпендикулярные прямые. Четвёртая прямая образует с данными углы α , β , γ соответственно. Докажите, что

cos 2α + cos 2β + cos 2γ = 1.

Вниз   Решение


Высота, проведённая из вершины тупого угла равнобедренной трапеции, делит большее основание на части, равные a и b (a > b). Найдите среднюю линию трапеции.

ВверхВниз   Решение


Автор: Фомин Д.

На плоскости дано N прямых  (N > 1),  никакие три из которых не пересекаются в одной точке и никакие две не параллельны. Докажите, что в частях, на которые эти прямые разбивают плоскость, можно расставить ненулевые целые числа, по модулю не превосходящие N, так, что суммы чисел по любую сторону от любой из данных прямых равны нулю.

ВверхВниз   Решение


Пусть коники $ \Gamma$ и $ \Gamma_{1}^{}$ касаются в точках A и B, a коники $ \Gamma$ и $ \Gamma_{2}^{}$ касаются в точках C и D, причем $ \Gamma_{1}^{}$ и $ \Gamma_{2}^{}$ имеют четыре общие точки. Тогда у коник $ \Gamma_{1}^{}$ и $ \Gamma_{2}^{}$ есть пара общих хорд, проходящих через точку пересечения прямых AB и CD.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 10]      



Задача 58523  (#31.056)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10,11

Докажите, что любая гипербола, проходящая через вершины треугольника ABC и точку пересечения его высот, является гиперболой с перпендикулярными асимптотами.
Прислать комментарий     Решение


Задача 58524  (#31.057)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10,11

Две коники имеют 4 общих точки. Докажите, что эти точки лежат на одной окружности тогда и только тогда, когда оси коник перпендикулярны.
Прислать комментарий     Решение


Задача 58525  (#31.058)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10,11

Докажите, что центры коник, проходящих через точки A, B, C и D, образуют конику $ \Gamma$.
Прислать комментарий     Решение


Задача 58526  (#31.059)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10,11

Докажите следующие свойства коники Г из задачи 31.058:
а) Г проходит через 6 середин отрезков, соединяющих пары данных точек, и через 3 точки пересечения прямых, соединяющих пары данных точек.
б) Центр Г совпадает с центром масс точек A, B, C и D.
в) Если D — точка пересечения высот треугольника ABC, то Г — окружность девяти точек этого треугольника.
д) Если четырехугольник ABCD вписанный, то Г — гипербола с перпендикулярными асимптотами. В этом случае оси всех коник пучка параллельны асимптотам Г.

Прислать комментарий     Решение


Задача 58527  (#31.060)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10,11

Пусть коники $ \Gamma$ и $ \Gamma_{1}^{}$ касаются в точках A и B, a коники $ \Gamma$ и $ \Gamma_{2}^{}$ касаются в точках C и D, причем $ \Gamma_{1}^{}$ и $ \Gamma_{2}^{}$ имеют четыре общие точки. Тогда у коник $ \Gamma_{1}^{}$ и $ \Gamma_{2}^{}$ есть пара общих хорд, проходящих через точку пересечения прямых AB и CD.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .