|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На плоскости расположено N точек. Отметим середины всевозможных отрезков с концами в этих точках. Какое наименьшее число отмеченных точек может получиться? Пусть fn = 22n + 1. Докажите, что fn делит 2fn – 2. Докажите неравенство для натуральных n:
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]
Докажите неравенство для натуральных n:
Докажите неравенство для натуральных n:
Докажите неравенство для натуральных n > 1:
Докажите неравенство для натуральных n > 1:
x ≥ –1, n – натуральное число. Докажите, что (1 + x)n ≥ 1 + nx.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|