ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На окружности расположена тысяча непересекающихся дуг, и на каждой из них написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное значение наибольшего из написанных чисел?

Вниз   Решение


Сколькими способами можно составить букет из 17 цветков, если в продаже имеются гвоздики, розы, гладиолусы, ирисы, тюльпаны и васильки?

Вверх   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 110]      



Задача 60407  (#02.073)

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 9,10

Сколькими способами можно составить букет из 17 цветков, если в продаже имеются гвоздики, розы, гладиолусы, ирисы, тюльпаны и васильки?

Прислать комментарий     Решение

Задача 60408  (#02.074)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 9,10

Почему равенства  11² = 121  и  11³ = 1331  похожи на строчки треугольника Паскаля? Чему равно 114?

Прислать комментарий     Решение

Задача 60409  (#02.075)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Правило произведения ]
Сложность: 2
Классы: 8,9

Сколькими способами, двигаясь по следующей таблице от буквы к букве,

            к            
          в   в          
        а   а   а        
      д   д   д   д      
    р   р   р   р   р    
  а   а   а   а   а   а  
т   т   т   т   т   т   т
можно прочитать слово "квадрат"?

Прислать комментарий     Решение

Задача 60410  (#02.076)

Тема:   [ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 9,10,11

Придумайте какой-нибудь способ достроить треугольник Паскаля вверх.

Прислать комментарий     Решение

Задача 60411  (#02.077)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10

При каких значениях n все коэффициенты в разложении бинома Ньютона  (a + b)n  нечётны?

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .