Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В последовательности чисел Фибоначчи выбрано 8 чисел, идущих подряд. Докажите, что их сумма не является числом Фибоначчи.

Вниз   Решение


Разрежьте одну из фигур, приведенных на рисунке, на две части так, чтобы из них можно было сложить каждую из оставшихся. Нарисуйте, как вы разрезаете и как складываете.





ВверхВниз   Решение


а) Из точки A проведены прямые, касающиеся окружности S в точках B и C. Докажите, что центр вписанной окружности треугольника ABC и центр его вневписанной окружности, касающейся стороны BC, лежат на окружности S.
б) Докажите, что окружность, проходящая через вершины B и C любого треугольника ABC и центр O его вписанной окружности, высекает на прямых AB и AC равные хорды.

ВверхВниз   Решение


Из любых четырёх точек на плоскости, никакие три из которых не лежат на одной прямой, можно так выбрать три, что треугольник с вершинами в этих точках имеет хотя бы один угол, не больший 45o. Доказать. (Сравните с задачей 2 для 10 класса.)

ВверхВниз   Решение


Докажите, что если число  n! + 1  делится на  n + 1,  то  n + 1  – простое число.

Вверх   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 559]      



Задача 30407  (#050)

Темы:   [ Деление с остатком ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 7,8,9

Найдите наименьшее число, дающее следующие остатки: 1 – при делении на 2, 2 – при делении на 3, 3 – при делении на 4, 4 – при делении на 5, 5 – при делении на 6.

Прислать комментарий     Решение

Задача 60458  (#051)

 [Обращение теоремы Вильсона]
Темы:   [ Простые числа и их свойства ]
[ Произведения и факториалы ]
[ Доказательство от противного ]
Сложность: 2+
Классы: 8,9

Докажите, что если число  n! + 1  делится на  n + 1,  то  n + 1  – простое число.

Прислать комментарий     Решение

Задача 30409  (#052)

Темы:   [ Делимость чисел. Общие свойства ]
[ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Докажите, что существует такое натуральное n, что числа  n + 1,  n + 2,  ...,  n + 1989  – составные.

Прислать комментарий     Решение

Задача 30410  (#053)

Темы:   [ Простые числа и их свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Докажите, что существует бесконечно много простых чисел.

Прислать комментарий     Решение

Задача 30411  (#054)

Темы:   [ Алгоритм Евклида ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 8,9

Найти наибольший общий делитель чисел  2n + 13  и  n + 7.

Прислать комментарий     Решение

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .