ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Алфутова Н.Б., Устинов А.В., Алгебра и теория чисел
>>
глава 3. Алгоритм Евклида и основная теорема арифметики
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите натуральное число n, зная, что оно имеет два простых делителя и удовлетворяет условиям τ(n) = 6, σ(n) = 28. Решение |
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 173]
Найдите натуральное число n, зная, что оно имеет два простых делителя и удовлетворяет условиям τ(n) = 6, σ(n) = 28.
Некоторое натуральное число n имеет два простых делителя. Его квадрат имеет а) 15; б) 81 делителей. Сколько делителей имеет куб этого числа?
Найдите натуральное число вида n = 2x3y5z, зная, что половина его имеет на 30 делителей меньше, треть – на 35 и пятая часть – на 42 делителя меньше, чем само число.
Докажите мультипликативность функций τ(n) и σ(n).
Доказать: число делителей n не превосходит 2.
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 173] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|