ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В последовательности чисел Фибоначчи выбрано 8 чисел, идущих подряд. Докажите, что их сумма не является числом Фибоначчи.

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 173]      



Задача 60574  (#03.122)

 [Теорема Люка]
Темы:   [ Числа Фибоначчи ]
[ Алгоритм Евклида ]
Сложность: 3+
Классы: 9,10,11

Докажите равенство  (Fn, Fm) = F(m, n).

Прислать комментарий     Решение

Задача 60575  (#03.123)

Тема:   [ Числа Фибоначчи ]
Сложность: 4
Классы: 9,10,11

В последовательности чисел Фибоначчи выбрано 8 чисел, идущих подряд. Докажите, что их сумма не является числом Фибоначчи.

Прислать комментарий     Решение

Задача 60576  (#03.124)

Тема:   [ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9,10,11

Рассмотрим множество последовательностей длины n, состоящих из 0 и 1, в которых не бывает двух 1 стоящих рядом. Докажите, что количество таких последовательностей равно Fn + 2. Найдите взаимно-однозначное соответствие между такими последовательностями и маршрутами кузнечика из задачи 3.109.

Прислать комментарий     Решение

Задача 60577  (#03.125)

Темы:   [ Числа Фибоначчи ]
[ Системы счисления (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

Фибоначчиева система счисления. Докажите, что произвольное натуральное число n, не превосходящее Fm, единственным образом можно представит в виде

n = $\displaystyle \sum\limits_{k=2}^{m}$bkFk,

где все числа b2, ..., bm равны 0 либо 1, причем среди этих чисел нет двух единиц стоящих рядом, то есть bkbk + 1 = 0 (2 $ \leqslant$ k $ \leqslant$ m - 1). Для записи числа в фибоначчиевой системе счисления используется обозначение:

n = (bk...b2)F.


Прислать комментарий     Решение

Задача 60578  (#03.126)

 [Формула Бине]
Темы:   [ Числа Фибоначчи ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Докажите по индукции формулу Бине:

Fn = $\displaystyle {\dfrac{\varphi^n-\widehat{\varphi}^{n}}{\sqrt5}}$,

где $ \varphi$ = $ {\dfrac{1+\sqrt5}{2}}$ — ``золотое сечение'' или число Фидия, а $ \widehat{\varphi}$ = $ {\dfrac{1-\sqrt5}{2}}$ (``фи с крышкой'') — сопряженное к нему.

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .