Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Сколькими способами можно разбить 14 человек на пары?

Вниз   Решение


В классе, в котором учатся Петя и Ваня – 31 человек. Сколькими способами можно выбрать из класса футбольную команду (11 человек) так, чтобы Петя и Ваня не входили в команду одновременно?

ВверхВниз   Решение


Сколько существует десятизначных чисел, в записи которых имеется хотя бы две одинаковые цифры?

ВверхВниз   Решение


а) Докажите, что в последовательности чисел Фибоначчи при  m ≥ 2  встречается не менее четырёх и не более пяти m-значных чисел.
б) Докажите, что число F5n+2  (n ≥ 0)  содержит в своей десятичной записи не менее  n + 1  цифры.

ВверхВниз   Решение


Определение. Последовательность чисел Люка
{L0, L1, L2, ...} = {2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, ...}
задается равенствами L0=2, L1=1, Ln=Ln-1+ Ln-2 при n>1.
Докажите, что числа Люка связаны с числами Фибоначчи соотношениями:
а) Ln = Fn - 1 + Fn + 1;
б) Fn = Ln - 1 + Ln + 1;
в) F2n = Ln . Fn;
г) Ln + 12 + Ln2 = 5F2n + 1;
д) Fn + 2 + Fn - 2 = 3Fn.

ВверхВниз   Решение


Сколькими способами можно поставить на шахматную доску так, чтобы они не били друг друга
  а) две ладьи;   б) двух королей;  в) двух слонов;   г) двух коней;   д) двух ферзей?
Все фигуры одного цвета.

ВверхВниз   Решение


Сколько существует шестизначных чисел, в записи которых есть хотя бы одна чётная цифра?

ВверхВниз   Решение


Рассмотрим алгоритм Евклида из задачи 60488, состоящий из k шагов.
Докажите, что начальные числа m0 и m1 должны удовлетворять неравенствам  m1Fk+1m0Fk+2.

ВверхВниз   Решение


Шесть ящиков занумерованы числами от 1 до 6. Сколькими способами можно разложить по этим ящикам 20 одинаковых шаров
  а) так, чтобы ни один ящик не оказался пустым?
  б) если некоторые ящики могут оказаться пустыми)?

ВверхВниз   Решение


Сколькими способами можно разрезать ожерелье, состоящее из 30 различных бусин на 8 частей (резать можно только между бусинами)?

ВверхВниз   Решение


Переплетчик должен переплести 12 одинаковых книг в красный, зелёный или синий переплеты. Сколькими способами он может это сделать?

ВверхВниз   Решение


Докажите, что каждое число a в треугольнике Паскаля, уменьшенное на 1, равно сумме всех чисел, заполняющих параллелограмм, ограниченный теми правой и левой диагоналями, на пересечении которых стоит число a (сами эти диагонали в рассматриваемый параллелограмм не включаются).

ВверхВниз   Решение


а) Дан кусок проволоки длиной 120 см. Можно ли, не ломая проволоки, изготовить каркас куба с ребром 10 см?
б) Какое наименьшее число раз придется ломать проволоку, чтобы всё же изготовить требуемый каркас?

ВверхВниз   Решение


Докажите, что каждое число a в треугольнике Паскаля равно
  а) сумме чисел предыдущей правой диагонали, начиная с самого левого вплоть до стоящего справа над числом a.
  б) сумме чисел предыдущей левой диагонали, начиная с самого правого вплоть до стоящего слева над числом a.

ВверхВниз   Решение


На танцплощадке собрались N юношей и N девушек. Сколькими способами они могут разбиться на пары для участия в очередном танце?

ВверхВниз   Решение


Последовательность чисел Люка
{L0, L1, L2, ...} = {2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, ...}
задается равенствами L0=2, L1=1, Ln=Ln-1+ Ln-2 при n>1.
Выразите Ln в замкнутой форме через $ \varphi$ и $ \widehat{\varphi}$.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 60585  (#03.133)

Тема:   [ Числа Фибоначчи ]
Сложность: 4-
Классы: 9,10,11

Определение. Последовательность чисел Люка
{L0, L1, L2, ...} = {2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, ...}
задается равенствами L0=2, L1=1, Ln=Ln-1+ Ln-2 при n>1.
Докажите, что числа Люка связаны с числами Фибоначчи соотношениями:
а) Ln = Fn - 1 + Fn + 1;
б) Fn = Ln - 1 + Ln + 1;
в) F2n = Ln . Fn;
г) Ln + 12 + Ln2 = 5F2n + 1;
д) Fn + 2 + Fn - 2 = 3Fn.

Прислать комментарий     Решение

Задача 60586  (#03.134)

Тема:   [ Числа Фибоначчи ]
Сложность: 3+
Классы: 9,10,11

В вершинах правильных многоугольников записываются числа 1 и 2. Сколько существует таких многоугольников, что сумма чисел, стоящих в вершинах, равна n ( n $ \geqslant$ 3)? Две расстановки чисел, которые можно совместить поворотом, не отождествляются.

Прислать комментарий     Решение

Задача 60587  (#03.135)

Тема:   [ Числа Фибоначчи ]
Сложность: 4
Классы: 9,10,11

Последовательность чисел Люка
{L0, L1, L2, ...} = {2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, ...}
задается равенствами L0=2, L1=1, Ln=Ln-1+ Ln-2 при n>1.
Выразите Ln в замкнутой форме через $ \varphi$ и $ \widehat{\varphi}$.

Прислать комментарий     Решение

Задача 60588  (#03.136)

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Числа Фибоначчи ]
Сложность: 6
Классы: 10,11

Докажите равенства
а) $ \sqrt[4]{\dfrac{7+3\sqrt5}{2}}$ - $ \sqrt[4]{\dfrac{7-3\sqrt5}{2}}$ = 1;
б) $ \sqrt[5]{\dfrac{11+5\sqrt5}{2}}$ + $ \sqrt[9]{\dfrac{76-34\sqrt5}{2}}$ = 1.
Найдите общую формулу, для которой данные равенства являются частными случаями.

Прислать комментарий     Решение

Задача 60589  (#03.137)

Темы:   [ Уравнения в целых числах ]
[ Числа Фибоначчи ]
[ Метод спуска ]
Сложность: 5-
Классы: 9,10,11

Решите в целых числах уравнения:   а)  x² – xy – y² = 1;   б)  x² – xy – y² = –1.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .