ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Сколькими способами можно разбить 14 человек на пары? В классе, в котором учатся Петя и Ваня – 31 человек. Сколькими способами можно выбрать из класса футбольную команду (11 человек) так, чтобы Петя и Ваня не входили в команду одновременно? Сколько существует десятизначных чисел, в записи которых имеется хотя бы две одинаковые цифры? а) Докажите, что в последовательности чисел Фибоначчи при m ≥ 2 встречается не менее четырёх и не более пяти m-значных чисел. |
Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]
а) Докажите, что в последовательности чисел Фибоначчи при m ≥ 2 встречается не менее четырёх и не более пяти m-значных чисел.
Рассмотрим алгоритм Евклида из задачи 60488, состоящий из k
шагов.
Пусть число m1 в десятичной системе счисления записывается при помощи n цифр.
Данная таблица аналогична треугольнику Паскаля и состоит из фибоначчиевых коэффициентов а) Докажите, что фибоначчиевы коэффициенты обладают свойством симметрии б) Найдите формулу, которая выражает коэффициент в) Объясните, почему все фибоначчиевы коэффициенты являются целыми числами.
Пусть a1, a2, ... – такая последовательность ненулевых чисел, что (am, an) = a(m, n) (m, n ≥ 1). Докажите, что все обобщенные биномиальные коэффициенты
Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке