Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Обухов Б.

В выпуклом шестиугольнике ABCDEF все стороны равны, а также  AD = BE = CF.  Докажите, что в этот шестиугольник можно вписать окружность.

Вниз   Решение


Контуры выпуклых многоугольников F и G не имеют общих точек, причём G расположен внутри F. Хорду многоугольника F – отрезок, соединяющий две точки контура F, назовём опорной для G, если она пересекается с G только по точкам контура: содержит либо только вершину, либо сторону G.
  а) Докажите, что найдётся опорная хорда, середина которой принадлежит контуру G.
  б) Докажите, что найдутся две такие хорды.

ВверхВниз   Решение


Вот несколько примеров, когда сумма квадратов k последовательных натуральных чисел равна сумме квадратов k – 1 следующих натуральных чисел:

32 + 42 = 52,

362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442,

552 + 562 + 572 + 582 + 592 + 602 = 612 + 622 + 632 + 642 + 652.

Найдите общую формулу, охватывающую все такие случаи.

ВверхВниз   Решение


Автор: Нилов Ф.

Дан правильный семиугольник A1A2A3A4A5A6A7. Прямые A2A3 и A5A6 пересекаются в точке X, а прямые A3A5 и A1A6 – в точке Y.
Докажите, что прямые A1A2 и XY параллельны.

ВверхВниз   Решение


Как связано разложение рационального числа в цепную дробь с алгоритмом Евклида?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 60595  (#03.143)

Тема:   [ Цепные (непрерывные) дроби ]
Сложность: 2+
Классы: 8,9,10,11

Разложите в цепные дроби числа 147/13 и 129/111.

Прислать комментарий     Решение

Задача 60596  (#03.144)

Темы:   [ Цепные (непрерывные) дроби ]
[ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9,10,11

Пусть     Чему равны Pn и Qn?

Прислать комментарий     Решение

Задача 60597  (#03.145)

Темы:   [ Цепные (непрерывные) дроби ]
[ Алгоритм Евклида ]
Сложность: 3
Классы: 8,9,10,11

Как связано разложение рационального числа в цепную дробь с алгоритмом Евклида?

Прислать комментарий     Решение

Задача 60598  (#03.146)

 [Геометрическая интерпретация алгоритма Евклида]
Темы:   [ Цепные (непрерывные) дроби ]
[ Разрезания на параллелограммы ]
Сложность: 3
Классы: 8,9,10,11

Работу алгоритма Евклида (см. задачу 60488) можно представить следующим образом. В прямоугольник размерами  m0×m1  (m1m0)  укладываем a0 квадратов размера   m1×m1,  в оставшийся прямоугольник размерами  m1×m2  (m2m1)  укладываем a1 квадратов размера  m2×m2,  и т. д. до тех пор, пока весь прямоугольник не покроется квадратами. Выразите общее число квадратов через элементы цепной дроби числа  m0/m1.

Прислать комментарий     Решение

Задача 60599  (#03.147)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Числа Фибоначчи ]
[ Алгоритм Евклида ]
Сложность: 3+
Классы: 9,10

Для каждого натурального n приведите пример прямоугольника, который разрезался бы ровно на n квадратов, среди которых должно быть не более двух одинаковых.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .