Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 18 задач
Версия для печати
Убрать все задачи

Докажите, что диаметр окружности, перпендикулярный хорде, делит эту хорду пополам.

Вниз   Решение


Докажите, что биссектриса треугольника делит его сторону на отрезки, пропорциональные двум другим сторонам.

ВверхВниз   Решение


На плоскости даны точки A и B . Доказать, что множество всех точек M , удалённых от A в 3 раза больше, чем от B , есть окружность.

ВверхВниз   Решение


При каких натуральных a существуют такие натуральные числа x и y, что (x + y)2 + 3x + y = 2a?

ВверхВниз   Решение


Какое максимальное число дамок можно поставить на чёрных полях шахматной доски размером 8×8 так, чтобы каждую дамку била хотя бы одна из остальных?

ВверхВниз   Решение


Угол между радиусами OA и OB окружности равен 60°. Найдите хорду AB, если радиус окружности равен R.

ВверхВниз   Решение


Автор: Фольклор

Последовательные натуральные числа 2 и 3 делятся на последовательные нечётные числа 1 и 3 соответственно; числа 8, 9 и 10 – делятся на 1, 3 и 5 соответственно. Найдутся ли 11 последовательных натуральных чисел, которые делятся на 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 и 21 соответственно?

ВверхВниз   Решение


а) Докажите, что положительный корень квадратного уравнения  bx² – abx – a = 0,  где a и b – различные натуральные числа, разлагается в чисто периодическую цепную дробь с длиной периода, равной 2.
б) Верно ли обратное утверждение?

ВверхВниз   Решение


Докажите, что если     то p/q – подходящая дробь к числу α.

ВверхВниз   Решение


На плоскости даны 16 точек (см. рисунок).

  а) Покажите, что можно стереть не более восьми из них так, что из оставшихся никакие четыре не будут лежать в вершинах квадрата.
  б) Покажите, что можно обойтись стиранием шести точек.
  в) Найдите минимальное число точек, которые достаточно стереть для этого.

ВверхВниз   Решение


Прямая, проведённая через вершину ромба вне его, отсекает на продолжении двух сторон отрезки p и q. Найдите сторону ромба.

ВверхВниз   Решение


Боковая сторона AB трапеции ABCD разделена на пять равных частей, и через третью точку деления, считая от точки B, проведена прямая, параллельная основаниям BC и AD. Найдите отрезок этой прямой, заключённый между сторонами трапеции, если  BC = a  и  AD = b.

ВверхВниз   Решение


Существует ли тетраэдр, у которого пары противоположных рёбер равны 12 и 12, 5 и 5, 13 и 13?

ВверхВниз   Решение


Радиус сектора равен r, а хорда его дуги равна a. Найдите радиус окружности, вписанной в этот сектор.

ВверхВниз   Решение


Дана правильная треугольная пирамида SABC . Точка S – вершина пирамиды, SA = 2 , BC = 3 , BM – медиана основания пирамиды, AR – высота треугольника ASB . Найдите длину отрезка MR .

ВверхВниз   Решение


Найдите наименьшее натуральное n, для которого существует такое m, что  

ВверхВниз   Решение


Из астрономии известно, что год имеет  365,2420... = [365; 4, 7, 1, 3,...]  так называемых "календарных суток". В Юлианском стиле каждый четвёртый год – високосный, то есть состоит из 366 дней. За сколько лет при таком календаре накапливается ошибка в одни сутки? На сколько дней отстает Юлианский календарь за 1000 лет? И вообще, почему он отстает, если юлианский год длиннее астрономического?

ВверхВниз   Решение


Найдите рациональное число, которое отличается от числа
  а)  α = ;   б)  α = 2 + ;   в)  α = 3 +   не более чем на 0,0001.

Вверх   Решение

Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 173]      



Задача 60614  (#03.162)

 [Формат A4]
Темы:   [ Цепные (непрерывные) дроби ]
[ Приближения чисел ]
Сложность: 4
Классы: 10,11

Найдите наименьшее натуральное n, для которого существует такое m, что  

Прислать комментарий     Решение

Задача 60615  (#03.163)

 [Числа из электрической розетки]
Темы:   [ Цепные (непрерывные) дроби ]
[ Приближения чисел ]
Сложность: 4
Классы: 10,11

Найдите наименьшее натуральное n, для которого существует такое m, что  

Прислать комментарий     Решение

Задача 60616  (#03.164)

Тема:   [ Цепные (непрерывные) дроби ]
Сложность: 4-
Классы: 10,11

Докажите, что значение любой периодической цепной дроби – квадратичная иррациональность.

Прислать комментарий     Решение

Задача 60617  (#03.165)

Темы:   [ Приближения чисел ]
[ Цепные (непрерывные) дроби ]
Сложность: 3+
Классы: 9,10,11

Найдите рациональное число, которое отличается от числа
  а)  α = ;   б)  α = 2 + ;   в)  α = 3 +   не более чем на 0,0001.

Прислать комментарий     Решение

Задача 60618  (#03.166)

Темы:   [ Цепные (непрерывные) дроби ]
[ Линейные рекуррентные соотношения ]
Сложность: 4-
Классы: 9,10,11

Докажите равенство:  []  = .

Прислать комментарий     Решение

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .