ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что если p – простое число, то   (a + b)pap – bp   делится на  p при любых целых a и b.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



Задача 60669  (#04.043)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Простые числа и их свойства ]
Сложность: 4
Классы: 9,10,11

Докажите утверждение обратное тому, что было в задаче 60668:
     если    делится на n при всех  1 ≤ k ≤ n – 1,  то n – простое число.

Прислать комментарий     Решение

Задача 60670  (#04.044)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Простые числа и их свойства ]
Сложность: 4
Классы: 8,9,10,11

а) Докажите, что если p — простое число и  2 ≤ k ≤ p – 2,  то    делится на p.

б) Верно ли обратное утверждение?

Прислать комментарий     Решение

Задача 60671  (#04.045)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если p – простое число, то   (a + b)pap – bp   делится на  p при любых целых a и b.

Прислать комментарий     Решение

Задача 60672  (#04.046)

Темы:   [ Инварианты ]
[ Делимость чисел. Общие свойства ]
[ Процессы и операции ]
[ Инварианты ]
Сложность: 3+
Классы: 8,9,10

Камни лежат в трёх кучках: в одной – 51 камень, в другой – 49 камней, а в третьей – 5 камней. Разрешается объединять любые кучки в одну, а также разделять кучку из чётного количества камней на две равные. Можно ли получить 105 кучек по одному камню в каждой?

Прислать комментарий     Решение

Задача 103964  (#04.047)

 [Делимость на n]
Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .