Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Длины двух сторон треугольника равны a, а длина третьей стороны равна b. Вычислите радиус его описанной окружности.

Вниз   Решение


Диагонали равнобедренной трапеции ABCD с боковой стороной AB пересекаются в точке P. Докажите, что центр O ее описанной окружности лежит на описанной окружности треугольника APB.

ВверхВниз   Решение


Пусть  p = am10m + am–110m–1 + ... + a0  – простое число, записанное в десятичной системе счисления. Докажите, что многочлен
P(x) = amxm + am–1xm–1 + ... + a1x + a0  неприводим над целыми числами.

ВверхВниз   Решение


Пусть H1 и H2 — две поворотные гомотетии. Докажите, что H1oH2 = H2oH1 тогда и только тогда, когда центры этих поворотных гомотетий совпадают.

ВверхВниз   Решение


Докажите, что  ha + hb + hc $ \geq$ 9r.

ВверхВниз   Решение


Неравенство Иенсена. Докажите, что если функция f (x) выпукла вверх на отрезке [a;b], то для любых различных точек x1, x2, ..., xn ( n $ \geqslant$ 2) из [a;b] и любых положительных $ \alpha_{1}^{}$, $ \alpha_{2}^{}$, ..., $ \alpha_{n}^{}$ таких, что $ \alpha_{1}^{}$ + $ \alpha_{2}^{}$ +...+ $ \alpha_{n}^{}$ = 1, выполняется неравенство:

f ($\displaystyle \alpha_{1}^{}$x1 +...+ $\displaystyle \alpha_{n}^{}$xn) > $\displaystyle \alpha_{1}^{}$f (x1) +...+ $\displaystyle \alpha_{n}^{}$f (xn).


ВверхВниз   Решение


Две высоты треугольника больше 1. Докажите, что его площадь больше 1/2.

ВверхВниз   Решение


Из свойств сравнений следует, что с классами вычетов можно делать все операции, которые допустимы для целых чисел: складывать, вычитать, умножать, возводить в степень. Отличие будет лишь в том, что построенная арифметика действует на конечном множестве классов вычетов. Например, для  m = 6  получаются такие таблицы сложения и умножения:

         
Постройте аналогичные таблицы сложения и умножения для модулей  m = 7, 8, ..., 13.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 57]      



Задача 60676  (#04.050)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 8,9,10,11

Что означают записи:   а) a ≡ b (mod 0);   б)  a ≡ b (mod 1)?

Прислать комментарий     Решение

Задача 60677  (#04.051)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 7,8,9,10

Докажите, что если  a ≡ b (mod m)  и   c ≡ d (mod m),  то
  а)  a + c ≡ b + d (mod m);   б)  ac ≡ bd (mod m).

Прислать комментарий     Решение

Задача 60678  (#04.052)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Из свойств сравнений следует, что с классами вычетов можно делать все операции, которые допустимы для целых чисел: складывать, вычитать, умножать, возводить в степень. Отличие будет лишь в том, что построенная арифметика действует на конечном множестве классов вычетов. Например, для  m = 6  получаются такие таблицы сложения и умножения:

         
Постройте аналогичные таблицы сложения и умножения для модулей  m = 7, 8, ..., 13.

Прислать комментарий     Решение

Задача 60679  (#04.053)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Когда сравнения  a ≡ b (mod m)  и   ac ≡ bc (mod m)  равносильны?

Прислать комментарий     Решение

Задача 60680  (#04.054)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Равносильны ли сравнения  a ≡ b (mod m)  и   ac ≡ bc (mod mc)?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 57]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .