ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть даны последовательности чисел {an} и {bn}, связанные соотношением $ \Delta$bn = an,    (n = 1, 2,...). Как связаны частичные суммы Sn последовательности {an}

Sn = a1 + a2 +...+ an

с последовательностью {bn}?

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 100]      



Задача 61428  (#11.001)

Тема:   [ Суммы числовых последовательностей и ряды разностей ]
Сложность: 2+
Классы: 8,9,10,11

Найдите

а) $ \Delta$n2;     в) $ \Delta$nk;
б) $ \Delta$n(n - 1);     д) $ \Delta$Cnk.

Прислать комментарий     Решение

Задача 61429  (#11.002)

Тема:   [ Суммы числовых последовательностей и ряды разностей ]
Сложность: 2
Классы: 8,9,10,11

Пусть даны последовательности чисел {an} и {bn}, связанные соотношением $ \Delta$bn = an,    (n = 1, 2,...). Как связаны частичные суммы Sn последовательности {an}

Sn = a1 + a2 +...+ an

с последовательностью {bn}?

Прислать комментарий     Решение

Задача 61430  (#11.003)

Тема:   [ Суммы числовых последовательностей и ряды разностей ]
Сложность: 2+
Классы: 8,9,10,11

Найдите последовательность {an} такую, что $ \Delta$an = n2. Используя результат предыдущей задачи, получите формулу для суммы 12 + 22 + 32 +...+ n2.

Прислать комментарий     Решение

Задача 61431  (#11.004)

Тема:   [ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 8,9,10,11

Выведите формулу для суммы 13 + 23 + 33 +...+ n3.

Прислать комментарий     Решение

Задача 61432  (#11.005)

Темы:   [ Числа Фибоначчи ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 9,10,11

Докажите тождество

$\displaystyle \sum\limits_{k=0}^{n}$$\displaystyle {\dfrac{1}{F_{2^k}}}$ = 3 - $\displaystyle {\dfrac{F_{2^n-1}}{F_{2^n}}}$        (n $\displaystyle \geqslant$ 1).



Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .