Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Автор: Уткин А.

В треугольнике $ABC$ $AL_a$, $BL_b$, $CL_c$ – биссектрисы, $K_a$ – точка пересечения касательных к описанной окружности в вершинах $B$ и $C$; $K_b$, $K_c$ определены аналогично. Докажите, что прямые $K_aL_a$, $K_bL_b$ и $K_cL_c$ пересекаются в одной точке.

Вниз   Решение


Дано уравнение  xn – a1xn–1a2xn–2 – ... – an–1x – an = 0,  где  a1 ≥ 0,  a2 ≥ 0,  an ≥ 0.
Доказать, что это уравнение не может иметь двух положительных корней.

ВверхВниз   Решение


Четырехугольник $ABCD$ описан вокруг окружности радиуса $R$. Пусть $h_1$ и $h_2$ – высоты опущенные из точки $A$ на стороны $BC$ и $CD$ соответственно. Аналогично $h_3$ и $h_4$ – высоты опущенные из точки $C$ на стороны $AB$ и $AD$. Докажите, что $$ \frac{h_1+h_2-2R}{h_1h_2}=\frac{h_3+h_4-2R}{h_3h_4}. $$

ВверхВниз   Решение


Предположим, что у нас имеется 1000000 автобусных билетов с номерами от 000000 до 999999. Будем называть билет счастливым, если сумма первых трёх цифр его номера равна сумме трёх последних. Пусть N – количество счастливых билетов. Докажите равенства:
  а)  (1 + x + ... + x9)3(1 + x–1 + ... + x–9)3 = x27 + ... + a1x + N + a1x + ... + x–27;
  б)  (1 + x + ... + x9)6 = 1 + ... + Nx27 + ... + x54.
  в) Найдите число счастливых билетов.

ВверхВниз   Решение


Вычислите суммы:
  а)  

  б)  

ВверхВниз   Решение


Точка O, лежащая внутри выпуклого четырёхугольника площади S, отражается симметрично относительно середин его сторон.
Найдите площадь четырёхугольника с вершинами в полученных точках.

ВверхВниз   Решение


Сторона AD прямоугольника ABCD в три раза больше стороны AB. Точки M и N делят AD на три равные части. Найдите  ∠AMB + ∠ANB + ∠ADB.

ВверхВниз   Решение


Докажите, что из равенства  P(x) = Q(x)T(x) + R(x)  следует соотношение  (P(x), Q(x)) = (Q(x), R(x)).

ВверхВниз   Решение


Пусть точка $P$ лежит на описанной окружности треугольника $ABC$. Точка $A_1$ симметрична ортоцентру треугольника $PBC$ относительно серединного перпендикуляра к $BC$. Точки $B_1$ и $C_1$ определяются аналогично. Докажите, что точки $A_1$, $B_1$ и $C_1$ лежат на одной прямой.

ВверхВниз   Решение


Четырехугольник $ABCD$, вписанный в окружность $\omega$, таков что $AD=BD=AC$. Точка $P$ движется по $\omega$. Прямые $AP$ и $DP$ пересекают прямые $CD$ и $AB$ в точках $E$ и $F$ соответственно. Прямые $BE$ и $CF$ пересекаются в точке $Q$. Найдите геометрическое место точек $Q$.

ВверхВниз   Решение


Укажите явный вид коэффициентов в многочленах Fn(x) и Ln(x). Решите задачи 60581 и 60582, используя многочлены Фибоначчи.
Про многочлены Фибоначчи и Люка смотри статьи в справочнике.

ВверхВниз   Решение


В треугольнике $ABC$ $AH_1$ и $BH_2$ – высоты; касательная к описанной окружности в точке $A$ пересекает $BC$ в точке $S_1$, а касательная в точке $B$ пересекает $AC$ в точке $S_2$; $T_1$ и $T_2$ – середины отрезков $AS_1$ и $BS_2$. Докажите, что $T_1T_2$, $AB$ и $H_1H_2$ пересекаются в одной точке.

ВверхВниз   Решение


Вычислите несколько первых многочленов Фибоначчи и Люка (определения многочленов Фибоначчи и Люка смотри здесь). Какие значения эти многочлены принимают при x = 1? Докажите, что многочлены Люка связаны с многочлены Фибоначчи соотношениями:
  а)  Ln(x) = Fn–1(x) + Fn+1(x)  (n ≥ 1);
  б)  Fn(x)(x² + 4) = Ln–1(x) + Ln+1(x)  (n ≥ 1);
  в)  F2n(x) = Ln(x)Fn(x)  (n ≥ 0);
  г)  (Ln(x))² + (Ln+1(x))² = (x² + 4)F2n+1(x)  (n ≥ 0);
  д)  Fn+2(x) + Fn–2(x) = (x² + 2)Fn(x).

ВверхВниз   Решение


В шестиугольнике $A_1A_2A_3A_4A_5A_6$ никакие четыре вершины не лежат на одной окружности, а диагонали $A_1A_4$, $A_2A_5$ и $A_3A_6$ пересекаются в одной точке. Обозначим через $l_i$ радикальную ось окружностей $A_iA_{i+1}A_{i-2}$ и $A_iA_{i-1}A_{i+2}$ (мы считаем, что точки $A_i$ и $A_{i+6}$ совпадают). Докажите, что прямые $l_i$, $i=1,\ldots,6$, пересекаются в одной точке.

ВверхВниз   Решение


Вычислите:

а) (1 + x)-1;     б) (1 - x)-1;    в) (1 - x)-2.

Вверх   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 100]      



Задача 61488  (#11.061)

Тема:   [ Формальные степенные ряды ]
Сложность: 3
Классы: 8,9,10,11

Обращение степенного ряда. Докажите, что если a0$ \ne$ 0, то для ряда F(x) существует ряд F-1(x) = b0 + b1x +...+ bnxn +... такой, что F(x)F-1(x) = 1.

Прислать комментарий     Решение

Задача 61489  (#11.062)

Тема:   [ Формальные степенные ряды ]
Сложность: 3
Классы: 8,9,10,11

Вычислите:

а) (1 + x)-1;     б) (1 - x)-1;    в) (1 - x)-2.
Прислать комментарий     Решение

Задача 61490  (#11.063)

Тема:   [ Формальные степенные ряды ]
Сложность: 3
Классы: 10,11

Пусть F(x) — производящая функция последовательности {an}. Докажите равенство $ \left.\vphantom{a_n=\dfrac{F^{(n)}(x)}{n!}}\right.$an = $ {\dfrac{F^{(n)}(x)}{n!}}$$ \left.\vphantom{a_n=\dfrac{F^{(n)}(x)}{n!}}\right\vert _{x=0}^{}$.

Прислать комментарий     Решение

Задача 61491  (#11.064)

Тема:   [ Формальные степенные ряды ]
Сложность: 3+
Классы: 9,10,11

Вычислите производящие функции следующих последовательностей:

а) an = n;    б) an = n2;    в) an = Cmn.

Прислать комментарий     Решение

Задача 61492  (#11.065)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Треугольник Паскаля и бином Ньютона ]
[ Многочлены (прочее) ]
Сложность: 4-
Классы: 10,11

Вычислите суммы:
  а)  

  б)  

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .