ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Высота AA', медиана BB' и биссектриса CC' треугольника ABC пересекаются в точке K. Известно, что  A'K = B'K.
Докажите, что и отрезок C'K имеет ту же длину.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 47]      



Задача 64387  (#8.3)

Темы:   [ Выпуклые многоугольники ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4-
Классы: 8,9

В выпуклом многоугольнике из каждой вершины опущены перпендикуляры на все не смежные с ней стороны. Может ли оказаться так, что основание каждого перпендикуляра попало на продолжение стороны, а не на саму сторону?

Прислать комментарий     Решение

Задача 64388  (#8.4)

Темы:   [ Четырехугольники (построения) ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Симметрия и построения ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4-
Классы: 8,9

Диагонали выпуклого четырёхугольника ABCD пересекаются в точке L. В треугольнике ABL отметили точку пересечения высот H, а в треугольниках BCL, CDL и DAL – центры O1, O2 и O3 описанных окружностей. Затем весь рисунок, кроме точек H, O1, O2, O3, стерли. Восстановите его.

Прислать комментарий     Решение

Задача 64389  (#8.5)

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Биссектриса угла (ГМТ) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Высота AA', медиана BB' и биссектриса CC' треугольника ABC пересекаются в точке K. Известно, что  A'K = B'K.
Докажите, что и отрезок C'K имеет ту же длину.

Прислать комментарий     Решение

Задача 64390  (#8.6)

Темы:   [ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Нилов Ф.

На отрезке AB построена дуга α (см. рис.). Окружность ω касается отрезка AB в точке T и пересекает α в точках C и D. Лучи AC и TD пересекаются в точке E, лучи BC и TC – в точке F. Докажите, что прямые EF и AB параллельны.

Прислать комментарий     Решение

Задача 64391  (#8.7)

Темы:   [ Касающиеся окружности ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Перебор случаев ]
Сложность: 4-
Классы: 8,9

Три окружности касаются друг друга извне и касаются четвёртой окружности изнутри. Их центры были отмечены, а сами окружности стёрты. Оказалось, что невозможно установить, какая из отмеченных точек – центр объемлющей окружности. Докажите, что отмеченные точки образуют прямоугольник.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 47]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .