ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Нилов Ф.

Две окружности ω1 и ω2 с центрами O1 и O2 пересекаются в точках A и B. Точки C и D, лежащие соответственно на ω1 и ω2 по разные стороны от прямой AB, равноудалены от этой прямой. Докажите, что точки C и D равноудалены от середины отрезка O1O2.

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 64394

Темы:   [ Пересекающиеся окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Средняя линия трапеции ]
Сложность: 3+
Классы: 8,9,10

Автор: Нилов Ф.

Две окружности ω1 и ω2 с центрами O1 и O2 пересекаются в точках A и B. Точки C и D, лежащие соответственно на ω1 и ω2 по разные стороны от прямой AB, равноудалены от этой прямой. Докажите, что точки C и D равноудалены от середины отрезка O1O2.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .