ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На каждой стороне треугольника ABC построено по квадрату во внешнюю сторону (пифагоровы штаны). Оказалось, что внешние вершины всех квадратов лежат на одной окружности. Доказать, что треугольник ABC — равнобедренный.

Вниз   Решение


На сторонах АВ и АС равнобедренного треугольника АВС  (АВ = АС)  соответственно отмечены точки Ми N так, что  АN > AM.  Прямые MN и ВС пересекаются в точке K. Сравните длины отрезков MK и MB.

Вверх   Решение

Задачи

Страница: << 1 2 3 [Всего задач: 15]      



Задача 65429  (#9.4.2)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Признаки и свойства параллелограмма ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 9,10,11

Вписанная окружность прямоугольного треугольника АВС (угол С – прямой) касается сторон АВ, ВС и СА в точках С1, А1, В1 соответственно. Высоты треугольника А1В1С1 пересекаются в точке D. Найдите расстояние между точками C и D, если длины катетов треугольника АВС равны 3 и 4.

Прислать комментарий     Решение

Задача 65430  (#9.4.3)

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 9,10,11

Василиса Премудрая расставляет все натуральные числа от 1 до n², где  n > 1,  в клетки таблицы размером n×n. Кандидат в женихи должен вычеркнуть строку и столбец так, чтобы сумма всех оставшихся чисел была чётной. Всегда ли выполнимо такое задание?

Прислать комментарий     Решение

Задача 65431  (#9.5.1)

Тема:   [ Квадратный трехчлен (прочее) ]
Сложность: 3
Классы: 9,10,11

Существует ли квадратный трёхчлен, который при  x = 2014, 2015, 2016  принимает значения 2015, 0, 2015 соответственно?

Прислать комментарий     Решение

Задача 65432  (#9.5.2)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Против большей стороны лежит больший угол ]
Сложность: 3
Классы: 8,9,10,11

На сторонах АВ и АС равнобедренного треугольника АВС  (АВ = АС)  соответственно отмечены точки Ми N так, что  АN > AM.  Прямые MN и ВС пересекаются в точке K. Сравните длины отрезков MK и MB.

Прислать комментарий     Решение

Задача 65433  (#9.5.3)

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

Можно ли расставить натуральные числа от 1 до 10 в ряд так, чтобы каждое число было делителем суммы всех предыдущих?

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .