ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Будем называть флажком пятиугольник, вершины которого — вершины некоторого квадрата и его центр. Разрежьте фигуру ниже справа на флажки (не обязательно одинаковые). 200 учеников выстроены прямоугольником по 10 человек в каждом поперечном ряду и по 20 человек в каждом продольном ряду. В каждом продольном ряду выбран самый высокий ученик, а затем из отобранных 10 человек выбран самый низкий. С другой стороны, в каждом поперечном ряду выбран самый низкий ученик, а затем среди отобранных 20 выбран самый высокий. Кто из двоих окажется выше? На графике многочлена с целыми коэффициентами отмечены две точки с целыми координатами. Дан правильный треугольник ABC. На стороне AB отмечена точка K, на стороне BC — точки L и M (L лежит на отрезке BM) так, что KL = KM, BL = 2, AK = 3. Найдите CM. Решить систему уравнений: x1x2 = x2x3 = ... = xn–1xn = xnx1 = 1. Дана бесконечная клетчатая бумага со стороной клетки, равной единице. Расстоянием между двумя клетками называется длина кратчайшего пути ладьи от одной клетки до другой (считается путь центра ладьи). В какое наименьшее число красок нужно раскрасить доску (каждая клетка закрашивается одной краской), чтобы две клетки, находящиеся на расстоянии 6, были всегда окрашены разными красками? В одной вершине куба написано число 1, а в остальных – нули. Можно прибавлять по единице к числам в концах любого ребра. На доске написаны числа 1, 2, 3, ..., 19, 20. Разрешается стереть любые два числа a и b и вместо них написать число a + b – 1. В некотором городе каждая улица идет либо с севера на юг, либо с востока на запад. Автомобилист совершил прогулку по этому городу, сделав ровно сто поворотов налево. Сколько поворотов направо он мог сделать при этом, если никакое место он не проезжал дважды и в конце вернулся назад? |
Страница: 1 [Всего задач: 5]
На координатной плоскости нарисованы четыре графика функций вида y = x² + ax + b, где a, b – числовые коэффициенты. Известно, что есть ровно четыре точки пересечения, причём в каждой пересекаются ровно два графика. Докажите, что сумма наибольшей и наименьшей из абсцисс точек пересечения равна сумме двух других абсцисс.
Все натуральные числа выписали подряд без промежутков на бесконечную ленту: 123456789101112... Затем ленту разрезали на полоски по 7 цифр в каждой.
Докажите, что любое семизначное число
Дан квадрат ABCD, M и N – середины сторон BC и AD. На продолжении диагонали AC за точку A взяли точку K. Отрезок KM пересекает сторону AB
В некотором городе каждая улица идет либо с севера на юг, либо с востока на запад. Автомобилист совершил прогулку по этому городу, сделав ровно сто поворотов налево. Сколько поворотов направо он мог сделать при этом, если никакое место он не проезжал дважды и в конце вернулся назад?
Сумма нескольких положительных чисел равна 10, а сумма квадратов этих чисел больше 20. Докажите, что сумма кубов этих чисел больше 40.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке