ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

У Винни-Пуха пять друзей, у каждого из которых в домике есть горшочки с медом: у Тигры – 1, у Пятачка – 2, у Совы – 3, у Иа-Иа – 4, у Кролика – 5. Винни-Пух по очереди приходит в гости к каждому другу, съедает один горшочек меда, а остальные забирает с собой. К последнему домику он подошёл, неся 10 горшочков с медом. Чей домик Пух мог посетить первым?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 65623  (#6.1)

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 3
Классы: 5,6,7

Автор: Фольклор

У Винни-Пуха пять друзей, у каждого из которых в домике есть горшочки с медом: у Тигры – 1, у Пятачка – 2, у Совы – 3, у Иа-Иа – 4, у Кролика – 5. Винни-Пух по очереди приходит в гости к каждому другу, съедает один горшочек меда, а остальные забирает с собой. К последнему домику он подошёл, неся 10 горшочков с медом. Чей домик Пух мог посетить первым?

Прислать комментарий     Решение

Задача 65624  (#6.2)

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 5,6,7

Есть четыре карточки с цифрами: 2, 0, 1, 6. Для каждого из чисел от 1 до 9 можно из этих карточек составить четырёхзначное число, которое кратно выбранному однозначному. А в каком году такое будет в следующий раз?

Прислать комментарий     Решение

Задача 65625  (#6.3)

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 5,6,7

На левом берегу реки собрались 5 физиков и 5 химиков. Всем надо на правый берег. Есть двухместная лодка. На правом берегу ни в какой момент не могут находиться ровно три химика или ровно три физика (но если человек приплыл к берегу в лодке и, не высаживаясь, уплыл обратно, он на этом берегу не считается). Каким образом им всем переправиться, сделав 9 рейсов направо?

Прислать комментарий     Решение

Задача 65626  (#6.4)

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 5,6,7

Автор: Шноль Д.Э.

В классе учатся 27 человек, но на урок физкультуры пришли не все. Учитель разбил пришедших на две равные по численности команды для игры в пионербол. При этом в первой команде была половина всех пришедших мальчиков и треть всех пришедших девочек, а во второй – половина всех пришедших девочек и четверть всех пришедших мальчиков. Остальные пришедшие ребята помогали судить. Сколько помощников могло быть у судьи?

Прислать комментарий     Решение

Задача 65627  (#6.5)

Темы:   [ Замощения костями домино и плитками ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 5,6,7

Вася нарисовал карандашом разбиение клетчатого прямоугольника на прямоугольники размером 3×1 (тримино), закрасил ручкой центральную клетку каждого из получившихся прямоугольников, после чего стер карандашные линии. Всегда ли можно восстановить исходное разбиение?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .