Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Доказать, что существует бесконечно много натуральных чисел, не представимых в виде  p + n2k  ни при каких простых p и целых n и k.

Вниз   Решение


Вычислите
  а)  cos π/9 cos /9 cos /9;
  б)  cos π/7 + cos /7 + cos /7.

ВверхВниз   Решение


Автор: Анджанс А.

Число рёбер многогранника равно 100.
  а) Какое наибольшее число рёбер может пересечь плоскость, не проходящая через его вершины, если многогранник выпуклый?
  б) Докажите, что для невыпуклого многогранника это число может равняться 96,
  в) но не может равняться 100.

ВверхВниз   Решение


Школьник едет на кружок на трамвае, платит рубль и получает сдачу. Доказать, что если он обратно также поедет в трамвае, то он сможет уплатить за проезд без сдачи. (Примечание. Проезд в трамвае стоил 30 коп. В обращении находились монеты достоинством в 1, 2, 3, 5, 10, 15 и 20 коп.)

ВверхВниз   Решение


Коля и Петя делят 2n + 1 орехов, n$ \ge$2, причём каждый хочет получать возможно больше. Предполагаются три способа дележа (каждый проходит в три этапа). 1-й этап: Петя делит все орехи на две части, в каждой не меньше двух орехов. 2-й этап: Коля делит каждую часть снова на две, в каждой не меньше одного ореха. 1-й и 2-й этапы общие для всех трёх способов. 3-й этап: При первом способе Коля берёт большую и меньшую части; При втором способе Коля берёт обе средние части; При третьем способе Коля берёт либо большую и меньшую части, либо обе средние части, но за право выбора отдаёт Пете один орех. Определить, какой способ самый выгодный для Коли и какой наименее выгоден для него.

ВверхВниз   Решение


Известно, что значения выражений b/a и b/c находятся в интервале  (–0,9, –0,8).  В каком интервале лежат значения выражения c/a?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 69]      



Задача 65953

Темы:   [ Десятичная система счисления ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 8,9

Сколько существует восьмизначных чисел, в записи которых цифры идут в порядке убывания?

Прислать комментарий     Решение

Задача 65957

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 8,9,10

Известно, что значения выражений b/a и b/c находятся в интервале  (–0,9, –0,8).  В каком интервале лежат значения выражения c/a?

Прислать комментарий     Решение

Задача 65958

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 2+
Классы: 8,9,10

Верно ли, что любой треугольник можно разбить на четыре равнобедренных треугольника?

Прислать комментарий     Решение

Задача 65983

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Тригонометрический круг ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 2+
Классы: 9,10,11

В выпуклом четырёхугольнике тангенс одного из углов равен числу m. Могут ли тангенсы каждого из трёх остальных углов также равняться m?

Прислать комментарий     Решение

Задача 66125

Тема:   [ Выделение полного квадрата. Суммы квадратов ]
Сложность: 2+
Классы: 7,8

Простым или составным является число  100² + 201?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .