|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Петя может располагать три отрезка в пространстве произвольным образом. После того как Петя расположит эти отрезки, Андрей пытается найти плоскость и спроектировать на нее отрезки так, чтобы проекции всех трех были равны. Всегда ли ему удастся это сделать, если: а) три отрезка имеют равные длины? б) длины двух отрезков равны между собой и не равны длине третьего? Две окружности касаются друг друга в точке C и прямой l в точках A и B. Прямая ВC пересекает вторую окружность в точке D. |
Страница: << 1 2 3 [Всего задач: 15]
Внутри равностороннего треугольника ABC отмечена точка M так, что ∠АМС = 150°.
На столе лежит прямоугольный лист бумаги. Саша разрезает его по прямой на две части и кладёт части на стол. Потом он берёт одну из частей, снова режет по прямой на две части и кладёт части обратно на стол. Потом снова берёт со стола и разрезает одну часть, и так далее. Какое наименьшее количество разрезов необходимо сделать Саше, чтобы на столе оказалось, по крайней мере, 252 одиннадцатиугольника?
График линейной функции у = kх + k + 1, где k > 0, пересекает оси координат в точках А и В.
Две окружности касаются друг друга в точке C и прямой l в точках A и B. Прямая ВC пересекает вторую окружность в точке D.
Дано 10 натуральных чисел. Из десяти всевозможных сумм по девять чисел всего девять различных: 86, 87, 88, 89, 90, 91, 93, 94, 95.
Страница: << 1 2 3 [Всего задач: 15] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|