ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал произведение чисел, написанных около её строки и её столбца ("таблица умножения"). Какое наибольшее количество произведений в этой таблице могли оказаться рациональными числами?

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48]      



Задача 66022  (#10.5)

Темы:   [ Числовые таблицы и их свойства ]
[ Рациональные и иррациональные числа ]
[ Примеры и контрпримеры. Конструкции ]
[ Исследование квадратного трехчлена ]
Сложность: 4-
Классы: 9,10,11

Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по ненулевому числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал произведение чисел, написанных около её строки и её столбца ("таблица умножения"). Какое наибольшее количество произведений в этой таблице могли оказаться рациональными числами?

Прислать комментарий     Решение

Задача 66026  (#11.5)

Темы:   [ Числовые таблицы и их свойства ]
[ Рациональные и иррациональные числа ]
[ Примеры и контрпримеры. Конструкции ]
[ Исследование квадратного трехчлена ]
Сложность: 4-
Классы: 9,10,11

Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал произведение чисел, написанных около её строки и её столбца ("таблица умножения"). Какое наибольшее количество произведений в этой таблице могли оказаться рациональными числами?

Прислать комментарий     Решение

Задача 66151  (#9.5)

Темы:   [ Доказательство от противного ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3+
Классы: 8,9,10

На доске написаны  n > 3  различных натуральных чисел, меньших чем  (n – 1)!.  Для каждой пары этих чисел Серёжа поделил большее на меньшее с остатком и записал в тетрадку полученное неполное частное (так, если бы он делил 100 на 7, то он бы получил  100 = 14·7 + 2  и записал бы в тетрадку число 14). Докажите, что среди чисел в тетрадке найдутся два равных.

Прислать комментарий     Решение

Задача 66159  (#10.5)

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

Автор: Храбров А.

На доску выписали все собственные делители некоторого составного натурального числа n, увеличенные на 1. Найдите все такие числа n, для которых числа на доске окажутся всеми собственными делителями некоторого натурального числа m.

Прислать комментарий     Решение

Задача 66160  (#11.5)

Темы:   [ Многочлены (прочее) ]
[ Алгебраические задачи на неравенство треугольника ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 9,10,11

Пусть P(x) – многочлен степени  n ≥ 2  с неотрицательными коэффициентами, а a, b и c – длины сторон некоторого остроугольного треугольника.
Докажите, что числа    также являются длинами сторон некоторого остроугольного треугольника.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .