Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Бесконечная возрастающая арифметическая прогрессия такова, что произведение каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа.

Вниз   Решение


В основании четырёхугольной пирамиды SABCD лежит ромб ABCD с острым углом при вершине A . Высота ромба равна 4, точка пересечения его диагоналей является ортогональной проекцией вершины S на плоскость основания. Сфера радиуса 2 касается плоскостей всех граней пирамиды. Найдите объём пирамиды, если расстояние от центра сферы до прямой AC равно AB .

ВверхВниз   Решение


а) Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило пять проводов разного цвета.
б) Каждые две из девяти ЭВМ соединены своим проводом. Можно ли раскрасить каждый из этих проводов в один из восьми цветов так, чтобы из каждой ЭВМ выходило восемь проводов разного цвета?

ВверхВниз   Решение


Известно, что в некоторую призму можно вписать сферу. Найдите площадь её боковой поверхности, если площадь основания равна S.

ВверхВниз   Решение


Страна называется пятёрочной, если в ней каждый город соединён авиалиниями ровно с пятью другими городами (международных рейсов нет).
  а) Нарисуйте схему авиалиний для пятёрочной страны из 10 городов.
  б) Сколько авиалиний в пятёрочной стране из 50 городов?
  в) Может ли существовать пятёрочная страна, в которой ровно 46 авиалиний?

ВверхВниз   Решение


Докажите, что в любую треугольную пирамиду можно вписать единственную сферу.

ВверхВниз   Решение


В произведении пяти натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 15 раз?

ВверхВниз   Решение


Игра с 25-ю монетами. В ряд лежат 25 монет. За ход разрешается брать одну или две рядом лежащие монеты. Проигрывает тот, кому нечего брать.

ВверхВниз   Решение


Числа x, y и z таковы, что все три числа  x + yz,  y + zx  и  z + xy  рациональны, а  x² + y² = 1.  Докажите, что число xyz² также рационально.

ВверхВниз   Решение


Точка O – основание высоты четырёхугольной пирамиды. Сфера с центром O касается всех боковых граней пирамиды. Точки A, B, C и D взяты последовательно по одной на боковых ребрах пирамиды так, что отрезки AB, BC и CD проходят через три точки касания сферы с гранями.
Докажите, что отрезок AD проходит через четвёртую точку касания.

ВверхВниз   Решение


Из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 составлены девять (не обязательно различных) девятизначных чисел; каждая из цифр использована в каждом числе ровно один раз. На какое наибольшее количество нулей может оканчиваться сумма этих девяти чисел?

ВверхВниз   Решение


Внутри равностороннего треугольника со стороной 1 расположено пять точек. Докажите, что расстояние между некоторыми двумя из них меньше 0, 5.

ВверхВниз   Решение


По кругу стоят 10 детей разного роста. Время от времени один из них перебегает на другое место (между какими-то двумя детьми). Дети хотят как можно скорее встать по росту в порядке возрастания по часовой стрелке (от самого низкого к самому высокому). Какого наименьшего количества таких перебежек им заведомо хватит, как бы они ни стояли изначально?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 66104  (#1)

Темы:   [ Правильные многоугольники ]
[ Векторы сторон многоугольников ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Дан правильный 12-угольник A1A2...A12.
Можно ли из 12 векторов    выбрать семь, сумма которых равна нулевому вектору?

Прислать комментарий     Решение

Задача 66105  (#2)

Темы:   [ Концентрические окружности ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10,11

Даны две концентрические окружности и точка A внутри меньшей из них. Угол величиной α с вершиной в A высекает на этих окружностях по дуге. Докажите, что если дуга большей окружности имеет угловой размер α, то и дуга меньшей имеет угловой размер α.

Прислать комментарий     Решение

Задача 66106  (#3)

Темы:   [ Числовые таблицы и их свойства ]
[ Простые числа и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

В каждую клетку квадрата 1000×1000 вписано число так, что в любом не выходящем за пределы квадрата прямоугольнике площади s со сторонами, проходящими по границам клеток, сумма чисел одна и та же. При каких s числа во всех клетках обязательно будут одинаковы?

Прислать комментарий     Решение

Задача 66107  (#4)

Темы:   [ Перестановки и подстановки (прочее) ]
[ Полуинварианты ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

По кругу стоят 10 детей разного роста. Время от времени один из них перебегает на другое место (между какими-то двумя детьми). Дети хотят как можно скорее встать по росту в порядке возрастания по часовой стрелке (от самого низкого к самому высокому). Какого наименьшего количества таких перебежек им заведомо хватит, как бы они ни стояли изначально?

Прислать комментарий     Решение

Задача 66108  (#5)

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Исследование квадратного трехчлена ]
[ Перпендикулярные прямые ]
[ Центральная симметрия помогает решить задачу ]
[ Производная и касательная ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Графики двух квадратных трёхчленов пересекаются в двух точках. В обеих точках касательные к графикам перпендикулярны.
Верно ли, что оси симметрии графиков совпадают?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .