Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

На сторонах AB, BC, CD и DA выпуклого четырехугольника ABCD взяты точки K, L, M и N соответственно, причем AK : KB = DM : MC = $ \alpha$ и  BL : LC = AN : ND = $ \beta$. Пусть P — точка пересечения отрезков KM и LN. Докажите, что NP : PL = $ \alpha$ и  KP : PM = $ \beta$.

Вниз   Решение


Построить выпуклый четырёхугольник, зная длины всех сторон и отрезка, соединяющего середины диагоналей.

ВверхВниз   Решение


Десяти ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине всем другим детям. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?

ВверхВниз   Решение


Внутри цилиндра лежат два шара радиуса r и один шар радиуса 2r так, что каждый шар касается двух других, верхнего основания цилиндра и его боковой поверхности. Найдите радиус основания цилиндра.

ВверхВниз   Решение


В прямоугольном треугольнике ABC отрезок BH является высотой, опущенной на гипотенузу, а точка L делит отрезок HC пополам. Найдите угол LBC, если известно, что AH = $ {\frac{2}{\sqrt{5}}}$, а BL = 3

ВверхВниз   Решение


Решите ребус:  АХ×УХ = 2001.

ВверхВниз   Решение


Решите ребус:  БАО×БА×Б = 2002.

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1. Докажите, что площадь одного из треугольников  AB1C1, A1BC1, A1B1C не превосходит:
а) SABC/4;
б)  SA1B1C1.

ВверхВниз   Решение


Три шара, среди которых имеется два одинаковых, касаются плоскости P и, кроме того, попарно касаются друг друга. Вершина прямого кругового конуса принадлежит плоскости P , а ось конуса перпендикулярна к этой плоскости. Все три шара лежат вне конуса, причем каждый из них касается некоторой образующей конуса. Найдите косинус угла между образующей конуса и плоскостью P , если известно, что в треугольнике с вершинами в точках касания шаров с плоскостью P величина одного из углов равна 150o .

ВверхВниз   Решение


Даны точки A(2;4), B(6; - 4) и C(- 8; - 1). Докажите, что треугольник ABC прямоугольный.

ВверхВниз   Решение


Докажите, что если в треугольной пирамиде сумма длин противоположных рёбер одна и та же для любой пары таких рёбер, то вершины этой пирамиды являются центрами четырёх шаров, попарно касающихся друг друга.

ВверхВниз   Решение


Сто медвежат нашли в лесу ягоды: самый младший успел схватить 1 ягоду, медвежонок постарше – 2 ягоды, следующий – 4 ягоды, и так далее, самому старшему досталось 299 ягод. Лиса предложила им поделить ягоды "по справедливости". Она может подойти к двум медвежатам и распределить их ягоды поровну между ними, а если при этом возникает лишняя ягода, то лиса её съедает. Такие действия она продолжает до тех пор, пока у всех медвежат не станет ягод поровну. Какое наибольшее количество ягод может съесть лиса?

ВверхВниз   Решение


Автор: Джукич Д.

Найдите все такие нечётные натуральные  n > 1,  что для любых взаимно простых делителей a и b числа n число  a + b – 1  также является делителем n.

ВверхВниз   Решение


В прямоугольном треугольнике ABC из вершины прямого угла C опущена высота CD . Проекция отрезка BD на катет BC равна l , а проекция отрезка AD на катет AC равна m . Найдите гипотенузу AB .

ВверхВниз   Решение


Даны 10 чисел:  а1 < а2 < ... < а10.  Сравните среднее арифметическое этих чисел со средним арифметическим первых шести чисел.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 66284  (#9.1.1)

Темы:   [ Текстовые задачи (прочее) ]
[ Обыкновенные дроби ]
Сложность: 2+
Классы: 7,8,9

Саша спускался по лестнице из своей квартиры к другу Коле, который живет на первом этаже. Когда он спустился на несколько этажей, оказалось, что он прошёл треть пути. Когда он спустился ещё на один этаж, ему осталось пройти половину пути. На каком этаже живёт Саша?

Прислать комментарий     Решение

Задача 116375  (#9.1.2)

Темы:   [ Вписанные и описанные окружности ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Свойства биссектрис, конкуррентность ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

На наибольшей стороне AB треугольника ABC взяли такие точки P и Q, что  AQ = AC,  BP = BC.
Докажите, что центр описанной окружности треугольника PQC совпадает с центром вписанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 109473  (#9.1.3)

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 6,7,8

Дима пишет подряд натуральные числа: 123456789101112... .
На каких местах, считая от начала, в первый раз будут стоять три цифры 5 подряд?

Прислать комментарий     Решение

Задача 66287  (#9.2.1)

Тема:   [ Средние величины ]
Сложность: 3-
Классы: 7,8,9

Даны 10 чисел:  а1 < а2 < ... < а10.  Сравните среднее арифметическое этих чисел со средним арифметическим первых шести чисел.

Прислать комментарий     Решение

Задача 66288  (#9.2.2)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 8,9

Можно ли разрезать треугольник на три выпуклых многоугольника с попарно различным количеством сторон?

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .