Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

а) На сторонах BC, CA и AB равнобедренного треугольника ABC с основанием AB взяты точки A1, B1 и C1 так, что прямые AA1, BB1 и CC1 пересекаются в одной точке. Докажите, что

$\displaystyle {\frac{AC_1}{C_1B}}$ = $\displaystyle {\frac{\sin ABB_1\sin CAA_1}{\sin BAA_1\sin CBB_1}}$.


б) Внутри равнобедренного треугольника ABC с основанием AB взяты точки M и N так, что  $ \angle$CAM = $ \angle$ABN и  $ \angle$CBM = $ \angle$BAN. Докажите, что точки C, M и N лежат на одной прямой.

Вниз   Решение


Середины M и N диагоналей AC и BD выпуклого четырехугольника ABCD не совпадают. Прямая MN пересекает стороны AB и CD в точках M1 и N1. Докажите, что если MM1 = NN1, то AD| BC.

ВверхВниз   Решение


Положительные числа x, y, z таковы, что  xyz = 1.  Докажите, что  

ВверхВниз   Решение


Диагонали описанной трапеции ABCD с основаниями AD и BC пересекаются в точке O. Радиусы вписанных окружностей треугольников  AOD, AOB, BOC и COD равны  r1, r2, r3 и r4 соответственно. Докажите, что $ {\frac{1}{r_1}}$ + $ {\frac{1}{r_3}}$ = $ {\frac{1}{r_2}}$ + $ {\frac{1}{r_4}}$.

ВверхВниз   Решение


На сторонах AB и BC равностороннего треугольника ABC отмечены точки D и K соответственно, а на стороне AC отмечены точки E и M так, что DA + AE = KC + CM = AB. Отрезки DM и KE пересекаются. Найдите угол между ними.

ВверхВниз   Решение


В театральной труппе 60 актеров. Каждые два хотя бы раз играли в одном и том же спектакле. В каждом спектакле занято не более 30 актеров.
Какое наименьшее количество спектаклей мог поставить театр?

ВверхВниз   Решение


Из вершин выпуклого четырехугольника опущены перпендикуляры на диагонали. Докажите, что четырехугольник, образованный основаниями перпендикуляров, подобен исходному четырехугольнику.

ВверхВниз   Решение


Через точки пересечения продолжений сторон выпуклого четырехугольника ABCD проведены две прямые, делящие его на четыре четырехугольника. Докажите, что если четырехугольники, примыкающие к вершинам B и D, описанные, то четырехугольник ABCD тоже описанный.

ВверхВниз   Решение


Даны две точки A и B и окружность. Найти на окружности точку X так, чтобы прямые AX и BX отсекли на окружности хорду CD, параллельную данной прямой MN.

ВверхВниз   Решение


Внутри параллелограмма ABCD расположена точка М. Сравните периметр параллелограмма и сумму расстояний от М до его вершин.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 53]      



Задача 66290

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9

Постройте на координатной плоскости множество точек, удовлетворяющих равенству  max {x, x²} + min {y, y²} = 1.

Прислать комментарий     Решение

Задача 66291

Темы:   [ Признаки и свойства параллелограмма ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 8,9

Внутри параллелограмма ABCD расположена точка М. Сравните периметр параллелограмма и сумму расстояний от М до его вершин.

Прислать комментарий     Решение

Задача 66292

Темы:   [ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

В театральной труппе 60 актеров. Каждые два хотя бы раз играли в одном и том же спектакле. В каждом спектакле занято не более 30 актеров.
Какое наименьшее количество спектаклей мог поставить театр?

Прислать комментарий     Решение

Задача 66293

Тема:   [ Классические неравенства (прочее) ]
Сложность: 3+
Классы: 8,9

Положительные числа x, y, z таковы, что  xyz = 1.  Докажите, что  

Прислать комментарий     Решение

Задача 66295

Темы:   [ Четность и нечетность ]
[ Малая теорема Ферма ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9

Пусть N – чётное число, которое не кратно 10. Найдите цифру десятков числа N20.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .