Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Начнём считать пальцы на правой руке: первый – мизинец, второй – безымянный, третий – средний, четвёртый – указательный, пятый – большой, шестой – снова указательный, седьмой – снова средний, восьмой – безымянный, девятый – мизинец, десятый – безымянный и т.д. Какой палец будет по счёту 1992-м?

Вниз   Решение


Найдите все действительные значения a и b, при которых уравнения  x³ + ax² + 18 = 0,   x³ + bx + 12 = 0  имеют два общих корня, и определите эти корни.

ВверхВниз   Решение


В волейбольном турнире каждые две команды сыграли по одному матчу.
  а) Докажите, что если для каждых двух команд найдётся третья, которая выиграла у этих двух, то число команд не меньше семи.
  б) Постройте пример такого турнира семи команд.
  в) Докажите, что если для любых трёх команд найдётся такая, которая выиграла у этих трёх, то число команд не меньше 15.

ВверхВниз   Решение


Автор: Фольклор

На турнир приехали школьники из разных городов. Один из организаторов заметил, что из них можно сделать 19 команд по 6 человек, и при этом еще менее четверти команд будут иметь по запасному игроку. Другой предложил сделать 22 команды по 5 или по 6 человек в каждой, и тогда более трети команд будут состоять из шести игроков. Сколько школьников приехало на турнир?

ВверхВниз   Решение


Решите уравнение     Сколько действительных корней оно имеет?

ВверхВниз   Решение


Докажите, что если вершины выпуклого n-угольника лежат в узлах клетчатой бумаги, а внутри и на его сторонах других узлов нет, то  n ≤ 4.

ВверхВниз   Решение


Автор: Фольклор

На карте обозначены четыре деревни: A, B, C и D, соединённые тропинками (см. рисунок).

В справочнике указано, что на маршрутах A-B-C и B-C-D есть по 10 колдобин, на маршруте A-B-D колдобин 22, а на маршруте A-D-B колдобин 45. Туристы хотят добраться из A в D так, чтобы на их пути было как можно меньше колдобин. По какому маршруту им надо двигаться?

ВверхВниз   Решение


Пусть ABCD — пространственный четырёхугольник, точки K1 и K2 делят соответственно стороны AB и DC в отношении $ \alpha$, точки K3 и K4 делят соответственно стороны BC и AD в отношении $ \beta$. Доказать, что отрезки K1K2 и K3K4 пересекаются.

ВверхВниз   Решение


На рёбрах AB , BC , CD , DA , BD и AC пирамиды ABCD взяты точки K , L , M , P , N и Q соответственно. Постройте прямую, по которой пересекаются плоскости KLM и PNQ .

ВверхВниз   Решение


В окружности с центром O проведены три равные хорды AB, CD и PQ (см. рисунок). Докажите, что угол MOK равен половине угла BLD.

ВверхВниз   Решение


Пусть R1, R2 и R3 – радиусы трёх окружностей, каждая из которых проходит через вершину треугольника и касается противолежащей стороны.
Докажите, что  1/R1 + 1/R2 + 1/R31/r,  где r – радиус вписанной окружности этого треугольника.

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 15]      



Задача 66353  (#11.2.3)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Разные задачи на разрезания ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Из клетчатой доски размером 8×8 выпилили восемь прямоугольников размером 2×1. После этого из оставшейся части требуется выпилить квадрат размером 2×2. Обязательно ли это удастся?

Прислать комментарий     Решение

Задача 66354  (#11.3.1)

Тема:   [ Функции. Непрерывность (прочее) ]
Сложность: 3+
Классы: 9,10,11

Для всех действительных x и y выполняется равенство  f(x² + y) = f(x) + f(y²).  Найдите  f(–1).

Прислать комментарий     Решение

Задача 66355  (#11.3.2)

Темы:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Хорды и секущие (прочее) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4-
Классы: 9,10,11

Пусть R1, R2 и R3 – радиусы трёх окружностей, каждая из которых проходит через вершину треугольника и касается противолежащей стороны.
Докажите, что  1/R1 + 1/R2 + 1/R31/r,  где r – радиус вписанной окружности этого треугольника.

Прислать комментарий     Решение

Задача 66356  (#11.3.3)

Темы:   [ Средние величины ]
[ Количество и сумма делителей числа ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

Докажите, что среднее арифметическое всех делителей натурального числа n лежит на отрезке  

Прислать комментарий     Решение

Задача 66357  (#11.4.1)

Тема:   [ Иррациональные неравенства ]
Сложность: 2
Классы: 8

Известно, что     где  x > 0,  y > 0,  z > 0.  Докажите, что  

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .