ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны два многочлена P(x) и Q(x) положительной степени, причём P(P(x)) ≡ Q(Q(x)) и P(P(P(x))) ≡ Q(Q(Q(x))). Дан выпуклый пятиугольник $ABCDE$, в котором AE || CD и $AB = BC$. Биссектрисы его углов $A$ и $C$ пересекаются в точке $K$. Докажите, что BK || AE. а) На бесконечном листе клетчатой бумаги двое играют в такую игру: первый окрашивает произвольную клетку в красный цвет; второй окрашивает произвольную неокрашенную клетку в синий цвет; затем первый окрашивает произвольную неокрашенную клетку в красный цвет, а второй еще одну неокрашенную клетку в синий цвет и т. д. Первый стремится к тому, чтобы центры каких-то четырёх
красных клеток образовали квадрат со сторонами, параллельными линиям сетки, а
второй хочет ему помешать. Может ли выиграть первый игрок? Сколько существует разных способов разбить число 2004 на натуральные слагаемые, которые приблизительно равны? Слагаемых может быть одно или несколько. Числа называются приблизительно равными, если их разность не больше 1. Способы, отличающиеся только порядком слагаемых, считаются одинаковыми. Вписанная окружность треугольника ABC касается сторон BC, CA и AB в точках A', B' и C'. Известно, что AA' = BB' = CC'. Докажите, что биссектрисы треугольника пересекаются в одной точке. Конструктор состоит из набора прямоугольных параллелепипедов. Все их можно поместить в одну коробку, также имеющую форму прямоугольного параллелепипеда. В бракованном наборе одно из измерений каждого параллелепипеда оказалось меньше стандартного. Всегда ли у коробки, в которую укладывается набор, тоже можно уменьшить одно из измерений (параллелепипеды укладываются в коробку так, что их рёбра параллельны рёбрам коробки)? Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно. В Швамбрании N городов, каждые два соединены дорогой. При этом дороги
сходятся лишь в городах (нет перекрёстков, одна дорога поднята эстакадой над
другой). Злой волшебник устанавливает на всех дорогах одностороннее движение
таким образом, что если из города можно выехать, то в него нельзя вернуться.
Доказать, что
Какое наибольшее число коней можно расставить на шахматной доске так, чтобы каждый бил не более семи из остальных? При каких N числа от 1 до N можно расставить в другом порядке так, чтобы среднее арифметическое любой группы из двух или более подряд стоящих чисел не было целым? В колоде 36 карт, разложенных в таком порядке, что масти периодически чередуются в последовательности: пики, трефы, червы, бубны, пики, трефы, червы, бубны, и т. д. С колоды сняли часть, перевернули её как целое и врезали в оставшуюся. После этого карты снимают по четыре. Доказать, что в каждой четвёрке все масти разные. Три окружности проходят через точку X. A, B, C – точки их пересечения, отличные от X. A' – вторая точка пересечения прямой AX и описанной окружности треугольника BCX. Точки B' и C' определяются аналогично. Докажите, что треугольники ABC', AB'C и A'BC подобны. Доказать, что уравнение m!·n! = k! имеет бесконечно много таких решений, что m, n и k – натуральные числа, большие единицы. На уроке танцев 15 мальчиков и 15 девочек построили двумя параллельными колоннами, так что образовалось 15 пар. В каждой паре измерили разницу роста мальчика и девочки (разница берётся по абсолютной величине, то есть из большего вычитают меньшее). Максимальная разность оказалась 10 см. В другой раз перед образованием пар каждую колонну предварительно построили по росту. Докажите, что максимальная разность будет не больше 10 см. Дан квадрат ABCD, M и N – середины сторон BC и AD. На продолжении диагонали AC за точку A взяли точку K. Отрезок KM пересекает сторону AB Рассматриваются 4(N – 1) граничных клеток таблицы размером N×N. Нужно вписать в эти клетки последовательные 4(N – 1) целых чисел так, чтобы сумма чисел в вершинах любого прямоугольника со сторонами, параллельными диагоналям таблицы, в том числе и в "вырожденных" прямоугольниках – диагоналях, равнялась одному и тому же числу (для прямоугольников суммируются четыре числа, для диагоналей – два числа). Возможно ли это? Рассмотрите случаи:
На доске написаны числа Существует ли такой квадратный трёхчлен f(x), что для любого натурального n уравнение f(f(...f(x))) = 0 (n букв "f") имеет ровно 2n различных действительных корней? Имеются семь жетонов с цифрами 1, 2, 3, 4, 5, 6, 7. На сторонах CB и CD квадрата ABCD взяты точки M и K так, что периметр треугольника CMK равен удвоенной
стороне квадрата. а) Во всех клетках квадрата 20×20 стоят солдатики. Ваня называет число d, а Петя переставляет солдатиков так, чтобы каждый передвинулся на расстояние не меньше d (расстояние берётся между центрами старой и новой клеток). При каких d это возможно? Из вершин основания тетраэдра в боковых гранях провели высоты, а затем в каждой из боковых граней основания двух лежащих в ней высот соединили прямой. Докажите, что эти три прямые параллельны одной плоскости. На доске выписаны числа 1, 2, ..., 20. Разрешается стереть любые два числа a и b и заменить их на число ab + a + b. a1, a2, a3, ... – возрастающая последовательность натуральных чисел. Известно, что
aak = 3k для любого k.
Внутри клетчатого прямоугольника периметра 50 клеток по границам клеток вырезана прямоугольная дырка периметра 32 клетки (дырка не содержит граничных клеток). Если разрезать эту фигуру по всем горизонтальным линиям сетки, получится 20 полосок шириной в 1 клетку. А сколько полосок получится, если вместо этого разрезать её по всем вертикальным линиям сетки? (Квадратик 1 × 1 — это тоже полоска!) |
Страница: 1 2 >> [Всего задач: 6]
Будем называть флажком пятиугольник, вершины которого — вершины некоторого квадрата и его центр. Разрежьте фигуру ниже справа на флажки (не обязательно одинаковые).
Братья Петя и Вася решили снять смешной ролик и выложить его в интернет. Сначала они сняли, как каждый из них идёт из дома в школу — Вася шёл 8 минут, а Петя шёл 5 минут. Потом пришли домой и сели за компьютер монтировать видео: они запустили одновременно Васино видео с начала и Петино видео с конца (в обратном направлении); в момент, когда на обоих роликах братья оказались в одной и той же точке пути, они склеили Петино видео с Васиным. Получился ролик, на котором Вася идёт из дома в школу, а потом в какой-то момент вдруг превращается в Петю и идёт домой задом наперёд. А какой длительности получился ролик?
Внутри клетчатого прямоугольника периметра 50 клеток по границам клеток вырезана прямоугольная дырка периметра 32 клетки (дырка не содержит граничных клеток). Если разрезать эту фигуру по всем горизонтальным линиям сетки, получится 20 полосок шириной в 1 клетку. А сколько полосок получится, если вместо этого разрезать её по всем вертикальным линиям сетки? (Квадратик 1 × 1 — это тоже полоска!)
Фокусник научил Каштанку лаять столько раз, сколько он ей тайком от публики покажет. Когда Каштанка таким способом правильно ответила, сколько будет дважды два, он спрятал вкусный кекс в чемодан с кодовым замком и сказал: — Восьмизначный код от чемодана — решение ребуса УЧУЙ = КЕ × КС. Надо заменить одинаковые буквы одинаковыми цифрами, а разные разными так, чтобы получилось верное равенство. Пролай нужное число раз на каждую из восьми букв, и получишь угощение. Но тут случился конфуз. Каштанка от волнения на каждую букву лаяла на 1 раз больше, чем надо. Конечно, чемодан не открылся. Вдруг раздался детский голос: «Нечестно! Собака правильно решила ребус!» И действительно, если каждую цифру решения, которое имел в виду фокусник, увеличить на 1, получится ещё одно решение ребуса! Можно ли восстановить: а) какое именно решение имел в виду фокусник; б) чему равнялось число УЧУЙ в этом решении?
Дан правильный треугольник ABC. На стороне AB отмечена точка K, на стороне BC — точки L и M (L лежит на отрезке BM) так, что KL = KM, BL = 2, AK = 3. Найдите CM.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке