Версия для печати
Убрать все задачи
Предположим, что нашлись 15 простых чисел, образующих арифметическую прогрессию с разностью d. Докажите, что d > 30000.

Решение
Общество из n членов выбирает из своего состава одного представителя.
а) Сколькими способами может произойти открытое голосование, если каждый голосует за одного человека (быть может, и за себя)?
б) Решите ту же задачу, если голосование – тайное, то есть учитывается лишь число голосов, поданных за каждого кандидата, и не учитывается, кто за кого голосовал персонально.


Решение
По кругу расставлены 10 железных гирек. Между каждыми соседними гирьками
находится бронзовый шарик. Масса каждого шарика равна разности масс соседних с
ним гирек. Докажите, что шарики можно разложить на две чаши весов так, чтобы
весы уравновесились.


Решение
Пусть $O$, $I$ – центры описанной и вписанной окружностей треугольника $ABC$; $R$, $r$ – их радиусы; $D$ – точка касания вписанной окружности со стороной $BC$; $N$ – произвольная точка на отрезке $ID$. Перпендикуляр к $ID$ в точке $N$ пересекает описанную окружность $ABC$ в точках $X$ и $Y$. Пусть $O_1$ – центр описанной окружности $XIY$. Найдите произведение $OO_1\cdot IN$.

Решение