ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

n красных и n синих точек, строго чередуясь, разделили окружность на 2n дуг так, что каждые две смежные из них имеют различную длину. При этом длины каждой из этих дуг равны одному из трёх чисел: a, b или c. Докажите, что n-угольник с красными вершинами и n-угольник с синими вершинами имеют равные периметры и равные площади.

Вниз   Решение


Hа сторонах AB, BC и AC треугольника ABC выбраны точки C', A' и B' соответственно так, что угол A'C'B' — прямой. Докажите, что отрезок A'B' длиннее диаметра вписанной окружности треугольника ABC.

ВверхВниз   Решение


В параллели 7-х классов 100 учеников, некоторые из которых дружат друг с другом. 1 сентября они организовали несколько клубов, каждый из которых основали три ученика (у каждого клуба свои). Дальше каждый день в каждый клуб вступали те ученики, кто дружил хотя бы с тремя членами клуба. К 19 февраля в клубе «Гепарды» состояли все ученики параллели. Могло ли получиться так, что в клубе «Черепахи» в этот же день состояло ровно 50 учеников?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 67172

Темы:   [ Десятичная запись числа ]
[ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 5,6,7,8

Аня называет дату красивой, если все 6 цифр её записи различны. Например, 19.04.23 — красивая дата, а 19.02.23 и 01.06.23 — нет. А сколько всего красивых дат в 2023 году?
Прислать комментарий     Решение


Задача 67168

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Комбинаторика (прочее) ]
[ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 5,6,7,8

Сто сидений карусели расположены по кругу через равные промежутки. Каждое покрашено в жёлтый, синий или красный цвет. Сиденья одного и того же цвета расположены подряд и пронумерованы 1, 2, 3, ... по часовой стрелке. Синее сиденье № 7 противоположно красному № 3, а жёлтое № 7 — красному № 23. Найдите, сколько на карусели жёлтых сидений, сколько синих и сколько красных.
Прислать комментарий     Решение


Задача 67173

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7,8,9

Посреди пустого бассейна стоит квадратная платформа 50 × 50 сантиметров, расчерченная на клеточки 10× 10 см. На клетки платформы Лена ставит башенки из кубиков 10× 10× 10 см. Потом Таня включает воду.

Если высоты башенок были такие, как в таблице справа, то при уровне воды 5 см был 1 остров, при уровне воды 15 см было два острова (если острова «граничат по углу», то считаются отдельными островами), а при уровне воды 25 см все башенки оказались закрыты водой и стало 0 островов.

Придумайте, какие башенки из кубиков можно поставить, чтобы количество островов было следующим:

Уровень воды (см) 515253545
Количество островов25250

В ответе напишите в каждой клетке квадрата 5 на 5, сколько кубиков на ней стоит.
Прислать комментарий     Решение


Задача 67174

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3+
Классы: 7,8,9

Два квадрата расположены как на рисунке, отмеченные отрезки равны. Докажите, что треугольник BDG равнобедренный.

Прислать комментарий     Решение

Задача 67175

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Связность и разложение на связные компоненты ]
Сложность: 3+
Классы: 6,7,8,9

В параллели 7-х классов 100 учеников, некоторые из которых дружат друг с другом. 1 сентября они организовали несколько клубов, каждый из которых основали три ученика (у каждого клуба свои). Дальше каждый день в каждый клуб вступали те ученики, кто дружил хотя бы с тремя членами клуба. К 19 февраля в клубе «Гепарды» состояли все ученики параллели. Могло ли получиться так, что в клубе «Черепахи» в этот же день состояло ровно 50 учеников?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .