ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В некотором множестве введена операция *, которая по каждым двум элементам a и b этого множества вычисляет некоторый элемент a*b этого множества. Известно, что: 1°. Для любых трех элементов a, b и c
          a*(b*c) = b*(c*a).
2°. Если a*b = a*c, то b = c.
3°. Если a*c = b*c, то a = b.

Докажите, что операция *
а) коммутативна, то есть для любых элементов a и b верно равенство a*b = b*a;
б) ассоциативна, то есть для любых элементов a, b и c верно равенство (a*b)*c = a*(b*c).

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 73652  (#М117)

Темы:   [ Задачи на движение ]
[ Покрытия ]
[ Примеры и контрпримеры. Конструкции ]
[ Линейные неравенства и системы неравенств ]
Сложность: 5
Классы: 9,10,11

Несколько человек в течение t минут наблюдали за улиткой. Каждый наблюдал за ней ровно 1 минуту и заметил, что за эту минуту улитка проползла ровно 1 метр. Ни в один момент времени улитка не оставалась без наблюдения. Какой наименьший и какой наибольший путь могла она проползти за эти t минут?

Прислать комментарий     Решение

Задача 73653  (#М118)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Обход графов ]
[ Разбиения на пары и группы; биекции ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 9,10,11

С четырёх сторон шахматной доски размером n×n построена кайма шириной в два поля. Докажите, что кайму можно обойти шахматным конём, побывав на каждом поле один и только один раз, в тех и только тех случаях, когда  n – 1  кратно 4.

Прислать комментарий     Решение

Задача 73654  (#М119)

Темы:   [ Проектирование помогает решить задачу ]
[ Площадь и ортогональная проекция ]
[ Выпуклые тела ]
[ Многогранники и многоугольники (прочее) ]
Сложность: 6
Классы: 10,11

Если на каждой грани выпуклого многогранника выбрать по точке и провести из этой точки направленный перпендикулярно соответствующей грани во внешнюю сторону вектор, длина которого равна площади этой грани, то сумма всех таких векторов окажется равна нулю. Докажите это.
Прислать комментарий     Решение


Задача 73655  (#М120)

Темы:   [ Теория групп (прочее) ]
[ Процессы и операции ]
Сложность: 4
Классы: 9,10,11

В некотором множестве введена операция *, которая по каждым двум элементам a и b этого множества вычисляет некоторый элемент a*b этого множества. Известно, что: 1°. Для любых трех элементов a, b и c
          a*(b*c) = b*(c*a).
2°. Если a*b = a*c, то b = c.
3°. Если a*c = b*c, то a = b.

Докажите, что операция *
а) коммутативна, то есть для любых элементов a и b верно равенство a*b = b*a;
б) ассоциативна, то есть для любых элементов a, b и c верно равенство (a*b)*c = a*(b*c).
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .