ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выпуски:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Школьники одного класса в сентябре ходили в два туристических похода. В первом походе мальчиков было меньше ⅖ общего числа участников этого похода, во втором – тоже меньше ⅖. Докажите, что в этом классе мальчики составляют меньше 4/7 общего числа учеников, если известно, что каждый из учеников участвовал по крайней мере в одном походе.

б) Пусть в k-м походе, где  1 ≤ k ≤ n,  мальчики составляли αk-ю часть общего количества участников этого похода. Какую наибольшую долю могут составлять мальчики на общей встрече всех туристов (всех, кто участвовал хотя бы в одном из n походов)?

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



Задача 52503  (#М163)

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

Диагонали выпуклого четырёхугольника взаимно перпендикулярны. Докажите, что четыре проекции точки пересечения диагоналей на стороны четырёхугольника лежат на одной окружности.

Прислать комментарий     Решение


Задача 73699  (#М164)

Темы:   [ Линейные рекуррентные соотношения ]
[ Числовые таблицы и их свойства ]
Сложность: 5-
Классы: 8,9,10

На белых клетках бесконечной шахматной доски, заполняющей верхнюю полуплоскость, записаны какие-то числа так, что для каждой чёрной клетки сумма чисел, стоящих в двух соседних с ней клетках – справа и слева, – равна сумме двух других чисел, стоящих в соседних с ней клетках – сверху и снизу. Известно число, стоящее в одной клетке n-й строки (крестик на рисунке), а требуется узнать число, стоящее над ним в (n+2)-й строке (знак вопроса на рисунке). Сколько ещё чисел, стоящих в двух нижних строках (точки на рисунке), нужно для этого знать?

Прислать комментарий     Решение

Задача 73700  (#М165)

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Подсчет двумя способами ]
Сложность: 5
Классы: 8,9,10

Автор: Лысов Ю.П.

На окружности расположено множество F точек, состоящее из 100 дуг. При любом повороте R окружности множество R(F) имеет хотя бы одну общую точку с множеством F. (Другими словами, для любого угла α от 0° до 180° в множестве F можно указать две точки, отстоящие одна от другой на угол α.) Какую наименьшую сумму длин могут иметь 100 дуг, образующих множество F? Каков будет ответ, если дуг не 100, а n?
Прислать комментарий     Решение


Задача 73701  (#М166)

Темы:   [ Задачи на проценты и отношения ]
[ Линейные неравенства и системы неравенств ]
Сложность: 5-
Классы: 7,8,9,10

а) Школьники одного класса в сентябре ходили в два туристических похода. В первом походе мальчиков было меньше ⅖ общего числа участников этого похода, во втором – тоже меньше ⅖. Докажите, что в этом классе мальчики составляют меньше 4/7 общего числа учеников, если известно, что каждый из учеников участвовал по крайней мере в одном походе.

б) Пусть в k-м походе, где  1 ≤ k ≤ n,  мальчики составляли αk-ю часть общего количества участников этого похода. Какую наибольшую долю могут составлять мальчики на общей встрече всех туристов (всех, кто участвовал хотя бы в одном из n походов)?

Прислать комментарий     Решение

Задача 73702  (#М167)

Темы:   [ Теорема Эйлера ]
[ Арифметическая прогрессия ]
[ Простые числа и их свойства ]
[ Разложение на множители ]
Сложность: 4
Классы: 8,9,10

Автор: Пойа Дж.

В любой арифметической прогрессии  a,  a + d,  a + 2d,  ...,  a + nd,  ...,  составленной из натуральных чисел, есть бесконечно много членов, в разложении которых на простые множители входят в точности одни и те же простые числа. Докажите это.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .