Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В числе не меньше 10 разрядов, в его записи используются только две разные цифры, причём одинаковые цифры не стоят рядом.
На какую наибольшую степень двойки может делиться такое число?

Вниз   Решение


Дана бесконечная последовательность цифр. Докажите, что для любого натурального числа n, взаимно простого с числом 10, можно указать такую группу стоящих подряд цифр последовательности, что записываемое этими цифрами число делится на n.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 73741  (#М206)

Темы:   [ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
[ Десятичная система счисления ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 9,10,11

Дана бесконечная последовательность цифр. Докажите, что для любого натурального числа n, взаимно простого с числом 10, можно указать такую группу стоящих подряд цифр последовательности, что записываемое этими цифрами число делится на n.

Прислать комментарий     Решение

Задача 73742  (#М207)

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Отношение площадей подобных треугольников ]
[ Наибольшая или наименьшая длина ]
[ Поворот помогает решить задачу ]
[ Подобные треугольники (прочее) ]
Сложность: 5+
Классы: 9,10,11

Даны два треугольника A1A2A3 и B1B2B3. "Опишите" вокруг треугольника A1A2A3 треугольник M1M2M3 наибольшей площади, подобный треугольнику B1B2B3 (вершина A1 должна лежать на прямой M2M3, вершина A2 – на прямой A1A3, вершина A3 – на прямой A1A2).

Прислать комментарий     Решение

Задача 73743  (#М208)

Темы:   [ Средние величины ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4
Классы: 9,10,11

Известно, что разность между наибольшим и наименьшим из чисел x1, x2, x3, ..., x9, x10 равна 1. Какой  а) наибольшей;  б) наименьшей может быть разность между наибольшим и наименьшим из 10 чисел x1,  ½ (x1 + x2),  ⅓ (x1 + x2 + x3),  ...,  1/10 (x1 + x2 + ... + x10)?
в) Каков будет ответ, если чисел не 10, а n?

Прислать комментарий     Решение

Задача 73744  (#М209)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Неравенства с углами ]
[ Неравенство Коши ]
Сложность: 5
Классы: 9,10,11

Для любого треугольника можно вычислить сумму квадратов тангенсов половин его углов. Докажите, что эта сумма
  а) меньше 2 для любого остроугольного треугольника;
  б) не меньше 2 для любого тупоугольного треугольника, величина тупого угла которого больше или равна  2 arctg 4/3;  а среди треугольников с тупым углом, меньшим  2 arctg 4/3,  имеются и такие, сумма квадратов тангенсов половин углов которых больше 2, и такие, сумма квадратов тангенсов половин углов которых меньше 2.

Прислать комментарий     Решение

Задача 79258  (#М210)

Темы:   [ Процессы и операции ]
[ Разложение в произведение транспозиций и циклов ]
[ Теория алгоритмов (прочее) ]
[ Правило произведения ]
[ Оценка + пример ]
Сложность: 5
Классы: 9,10,11

Имеется 100-значное число, состоящее из единиц и двоек. Разрешается в любых десяти последовательных цифрах поменять местами первые пять с пятью следующими. Два таких числа называются похожими, если одно из них получается из другого несколькими такими операциями. Какое наибольшее количество попарно непохожих чисел можно выбрать?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .