Страница: 1 [Всего задач: 5]
Задача
73741
(#М206)
|
|
Сложность: 4- Классы: 9,10,11
|
Дана бесконечная последовательность цифр. Докажите, что для любого натурального числа n, взаимно простого с числом 10, можно указать такую группу стоящих подряд цифр последовательности, что записываемое этими цифрами число делится на n.
Задача
73742
(#М207)
|
|
Сложность: 5+ Классы: 9,10,11
|
Даны два треугольника A1A2A3 и B1B2B3. "Опишите" вокруг треугольника A1A2A3 треугольник M1M2M3 наибольшей площади, подобный треугольнику B1B2B3 (вершина A1 должна лежать на прямой M2M3, вершина A2 – на прямой A1A3, вершина A3 – на прямой A1A2).
Задача
73743
(#М208)
|
|
Сложность: 4 Классы: 9,10,11
|
Известно, что разность между наибольшим и наименьшим из чисел x1, x2, x3, ..., x9, x10 равна 1. Какой а) наибольшей; б) наименьшей может быть разность между наибольшим и наименьшим из 10 чисел x1, ½ (x1 + x2), ⅓ (x1 + x2 + x3), ..., 1/10 (x1 + x2 + ... + x10)?
в) Каков будет ответ, если чисел не 10, а n?
Задача
73744
(#М209)
|
|
Сложность: 5 Классы: 9,10,11
|
Для любого треугольника можно вычислить сумму квадратов тангенсов половин его углов. Докажите, что эта сумма
а) меньше 2 для любого остроугольного треугольника;
б) не меньше 2 для любого тупоугольного треугольника, величина тупого угла которого больше или равна 2 arctg 4/3; а среди треугольников с тупым углом, меньшим 2 arctg 4/3, имеются и такие, сумма квадратов тангенсов половин углов которых больше 2, и такие, сумма квадратов тангенсов половин углов которых меньше 2.
Задача
79258
(#М210)
|
|
Сложность: 5 Классы: 9,10,11
|
Имеется 100-значное число, состоящее из единиц и двоек. Разрешается в любых
десяти последовательных цифрах поменять местами первые пять с пятью следующими.
Два таких числа называются
похожими, если одно из них получается из другого
несколькими такими операциями. Какое наибольшее количество попарно непохожих
чисел можно выбрать?
Страница: 1 [Всего задач: 5]