ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Кацыло П.

В углу шахматной доски стоит фигура. Первый игрок может ходить ею два раза подряд как обычным конём (на два поля в одном направлении и на одно – в перпендикулярном), а второй – один раз как конём с удлинённым ходом (на три поля в одном направлении и на одно – в перпендикулярном). Так они ходят по очереди. Первый стремится к тому, чтобы поставить фигуру в противоположный угол, а второй – ему помешать. Кто из них выигрывает (размеры доски – n×n, где  n > 3)?

   Решение

Задачи

Страница: 1 [Всего задач: 3]      



Задача 34846  (#М267)

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Принцип крайнего (прочее) ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 8,9

В последовательности троек целых чисел  (2, 3, 5),  (6, 15, 10), ... каждая тройка получается из предыдущей таким образом: первое число умножается на второе, второе – на третье, а третье – на первое, и полученные произведения дают новую тройку. Докажите, что ни одно из чисел, получаемых таким образом, не будет степенью целого числа: квадратом, кубом и т.д.

Прислать комментарий     Решение

Задача 73803  (#М268)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Теория игр (прочее) ]
Сложность: 4
Классы: 7,8,9

Автор: Кацыло П.

В углу шахматной доски стоит фигура. Первый игрок может ходить ею два раза подряд как обычным конём (на два поля в одном направлении и на одно – в перпендикулярном), а второй – один раз как конём с удлинённым ходом (на три поля в одном направлении и на одно – в перпендикулярном). Так они ходят по очереди. Первый стремится к тому, чтобы поставить фигуру в противоположный угол, а второй – ему помешать. Кто из них выигрывает (размеры доски – n×n, где  n > 3)?

Прислать комментарий     Решение

Задача 73804  (#М269)

 [Числа Стирлинга]
Темы:   [ Рекуррентные соотношения (прочее) ]
[ Целочисленные и целозначные многочлены ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 5
Классы: 8,9,10,11

Обозначим через Tk(n) сумму произведений по k чисел от 1 до n. Например,    T2(4) = 1·2 + 1·3 + 1·4 + 2·3 + 2·4 + 3·4.
   а) Найдите формулы для T2(n) и T3(n).
   б) Докажите, что Tk(n) является многочленом от n степени 2k.
   в) Укажите метод нахождения многочленов Tk(n) при  k = 2, 3, 4, ...  и примените его для отыскания многочленов T4(n) и T5(n).

Прислать комментарий     Решение

Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .