ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Тупанов А.

В таблицу n×n записаны n² чисел, сумма которых неотрицательна. Докажите, что можно переставить столбцы таблицы так, что сумма n чисел по диагонали, идущей из левого нижнего угла в правый верхний, будет неотрицательна.

   Решение

Задачи

Страница: 1 [Всего задач: 3]      



Задача 73831  (#М296)

Темы:   [ Числовые таблицы и их свойства ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 8,9,10

Автор: Тупанов А.

В таблицу n×n записаны n² чисел, сумма которых неотрицательна. Докажите, что можно переставить столбцы таблицы так, что сумма n чисел по диагонали, идущей из левого нижнего угла в правый верхний, будет неотрицательна.

Прислать комментарий     Решение

Задача 78839  (#М298)

Темы:   [ Ряд Фарея ]
[ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Индукция (прочее) ]
[ Теорема Пика ]
Сложность: 4
Классы: 8,9,10,11

Рассмотрим все рациональные числа между нулём и единицей, знаменатели которых не превосходят n, расположенные в порядке возрастания (ряд Фарея). Пусть a/b и c/d – какие-то два соседних числа (дроби несократимы). Доказать, что  |bc – ad| = 1.

Прислать комментарий     Решение

Задача 73834  (#М299)

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Поворот помогает решить задачу ]
[ Метод спуска ]
[ Правильные многоугольники ]
Сложность: 6-
Классы: 8,9,10

При каких n правильный n-угольник можно разместить на листе бумаги в линейку так, чтобы все вершины лежали на линиях?
(Линии — параллельные прямые, расположенные на одинаковых расстояниях друг от друга.)

Прислать комментарий     Решение

Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .