ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Вдоль прямолинейного участка границы установлено 15 столбов. Около каждого столба поймали несколько близоруких шпионов. Для каждого столба одного из пойманных около него шпионов допросили. Каждый из допрошенных честно сказал, сколько других шпионов он видел. При этом видел он только тех, кто находился около его столба и около ближайших соседних столбов. Можно ли по этим данным восстановить численность шпионов, пойманных около каждого столба? Окружность, центр которой лежит внутри квадрата PQRS, проходит через точки Q и R. Докажите, что для любого натурального числа a1 > 1 существует такая возрастающая последовательность натуральных чисел a1, a2, a3, ..., Найдите двузначное число, которое вдвое больше произведения своих цифр. Построить треугольник ABC по точкам M и N — основаниям высот AM и BN — и прямой, на которой лежит сторона AB. |
Страница: 1 2 >> [Всего задач: 6]
Дописать к 523... три цифры так, чтобы полученное шестизначное число делилось на 7, 8 и 9.
Дописать к 523... три цифры так, чтобы полученное шестизначное число делилось на 7, 8 и 9.
Доказать, что многочлен с целыми коэффициентами a0xn + a1xn–1 + ... + an–1x + an, принимающий при x = 0 и x = 1 нечётные значения, не имеет целых корней.
Построить треугольник ABC по точкам M и N — основаниям высот AM и BN — и прямой, на которой лежит сторона AB.
Решить уравнение:
| x + 1| - | x| + 3| x - 1| - 2| x - 2| = x + 2.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке