ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости проведено n прямых линий. Доказать, что области, на которые эти прямые разбивают плоскость, можно так закрасить двумя красками (каждая область закрашивается только одной краской), что никакие две соседние области (т.е. области, соприкасающиеся только по отрезку прямой) не будут закрашены одной и той же краской. Решение |
Страница: 1 2 3 >> [Всего задач: 13]
Сумма обратных величин трёх натуральных чисел равна 1. Каковы эти числа?
Если число – целое, то и число – целое. Доказать.
Сколько различных целочисленных решений имеет неравенство |x| + |y| < 100?
Сколько цифр имеет число 2100?
Страница: 1 2 3 >> [Всего задач: 13] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|