ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Диагональ BD трапеции ABCD равна m, а боковая сторона AD равна n. Найдите основание CD, если известно, что основание, диагональ и боковая сторона трапеции, выходящие из вершины C, равны между собой.
Один квадрат вписан в окружность, а другой квадрат описан около той же окружности так, что его вершины лежат на продолжениях сторон первого (см. рисунок). Найдите угол между сторонами этих квадратов. Сколько различных целочисленных решений имеет неравенство |x| + |y| < 100? |
Страница: 1 2 3 >> [Всего задач: 13]
На плоскости проведено n прямых линий. Доказать, что области, на которые эти прямые разбивают плоскость, можно так закрасить двумя красками (каждая область закрашивается только одной краской), что никакие две соседние области (т.е. области, соприкасающиеся только по отрезку прямой) не будут закрашены одной и той же краской.
Сумма обратных величин трёх натуральных чисел равна 1. Каковы эти числа?
Если число
Сколько различных целочисленных решений имеет неравенство |x| + |y| < 100?
Сколько цифр имеет число 2100?
Страница: 1 2 3 >> [Всего задач: 13]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке