Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

K членов Жюри Десятой Всероссийской олимпиады школьников по информатике решили отметить столь круглую годовщину в одном из лучших ресторанов на Невском проспекте. На десерт вниманию Жюри предложили торт, имеющий форму прямоугольной призмы с выпуклым N-угольником в основании. Жюри вооружается десертными ножами и собирается справедливо разделить торт на K частей равного объема. Ножами можно проводить прямые вертикальные разрезы от одной границы торта до другой; различные разрезы могут иметь общие точки лишь в своих концевых вершинах.

Напишите программу, помогающую членам Жюри построить требуемые K-1 разрезов.

Входные данные

В первой строке входного файла содержатся два целых числа K и N (1 ≤ K, N ≤ 50). Далее следуют N пар вещественных чисел – координаты
последовательно расположенных вершин N-угольника.

Выходные данные

Каждый из K-1 разрезов в выходном файле должен быть представлен четверкой чисел – координатами своих концов. Все числа должны быть разделены пробелами и/или символами перевода строки.

Пример входного файла

4 3
2 1
0 0.5
4 0.5

Пример выходного файла

2 1 1 0.5
2 1 2 0.5
2 1 3 0.5

Вниз   Решение


В прямоугольнике площадью 5 кв. единиц расположены девять прямоугольников, площадь каждого из которых равна единице. Докажите, что площадь общей части некоторых двух прямоугольников больше или равна 1/9.

ВверхВниз   Решение


На клетчатом листе нарисован прямоугольник 6×7. Разрежьте его по линиям сетки на пять каких-нибудь квадратов.

ВверхВниз   Решение


Автор: Фольклор

Конструктор состоит из плиток размерами 1 × 3 и 1 × 4. Из всех имеющихся плиток Федя сложил два прямоугольника размерами 2 × 6 и 7 × 8. Его брат Антон утащил по одной плитке из каждого сложенного прямоугольника. Сможет ли Федя из оставшихся плиток собрать прямоугольник размером 12 × 5?

ВверхВниз   Решение


В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.
Могут ли они вращаться?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 77978  (#1)

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9

Доказать, что наибольший общий делитель суммы двух чисел и их наименьшего общего кратного равен наибольшему общему делителю самих чисел.

Прислать комментарий     Решение

Задача 77979  (#2)

Темы:   [ Описанные четырехугольники ]
[ Ромбы. Признаки и свойства ]
[ Симметрия помогает решить задачу ]
Сложность: 2+
Классы: 8,9

Около окружности описан четырёхугольник. Его диагонали пересекаются в центре этой окружности. Докажите, что этот четырёхугольник — ромб.
Прислать комментарий     Решение


Задача 77980  (#3)

Тема:   [ Четность и нечетность ]
Сложность: 3-
Классы: 8,9

В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.
Могут ли они вращаться?

Прислать комментарий     Решение

Задача 77981  (#4)

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Подсчет двумя способами ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 8,9

Тысяча точек является вершинами выпуклого тысячеугольника, внутри которого расположено ещё пятьсот точек так, что никакие три из пятисот не лежат на одной прямой. Данный тысячеугольник разрезан на треугольники таким образом, что все указанные 1500 точек являются вершинами треугольников и эти треугольники не имеют никаких других вершин. Сколько получится треугольников при таком разрезании?
Прислать комментарий     Решение


Задача 77982  (#5)

Тема:   [ Системы линейных уравнений ]
Сложность: 2+
Классы: 8,9

Решить систему
   x1 + 2x2 + 2x3 + 2x4 + 2x5 = 1,
   x1 + 3x2 + 4x3 + 4x4 + 4x5 = 2,
   x1 + 3x2 + 5x3 + 6x4 + 6x5 = 3,
   x1 + 3x2 + 5x3 + 7x4 + 8x5 = 4,
   x1 + 3x2 + 5x3 + 7x4 + 9x5 = 5.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .