ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов. |
Страница: 1 [Всего задач: 5]
Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов.
Пусть ABCD — пространственный четырёхугольник, точки K1 и K2 делят
соответственно стороны AB и DC в отношении
Даны несколько перекрывающихся кругов, занимающие на плоскости площадь, равную
1. Доказать, что из них можно выбрать некоторое количество попарно
неперекрывающихся, чтобы их общая площадь была не менее
Даны n комплексных чисел C1, C2,..., Cn, таких, что если их представлять себе как точки плоскости, то они являются вершинами выпуклого n-угольника. Доказать, что если комплексное число z обладает тем свойством, что
Два концентрических круга поделены на 2k равных секторов. Каждый сектор выкрашен в белый или чёрный цвет. Доказать, что если белых и чёрных секторов на каждом круге одинаковое количество, то можно сделать такой поворот, что по крайней мере на половине длины окружности будут соприкасаться разноцветные куски.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке