Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Выпуклой фигурой F нельзя накрыть полукруг радиуса R. Может ли случиться, что двумя фигурами, равными F, можно накрыть круг радиуса R?

Вниз   Решение


Докажите, что среди всех треугольников ABC с фиксированным углом $ \alpha$ и полупериметром p наибольшую площадь имеет равнобедренный треугольник с основанием BC.

ВверхВниз   Решение


Доказать, что если натуральное число k делится на 10101010101, то в его десятичной записи по крайней мере шесть цифр отличны от нуля.

ВверхВниз   Решение


Точки A', B', C' – основания высот остроугольного треугольника ABC. Окружность с центром B и радиусом BB' пересекает прямую A'C' в точках K и L (точки K и A лежат по одну сторону от BB'). Докажите, что точка пересечения прямых AK и CL лежит на прямой BO, где O – центр описанной окружности треугольника ABC.

ВверхВниз   Решение


Автор: Ивлев Ф.

Дан треугольник ABC. Касательная в точке C к его описанной окружности пересекает прямую AB в точке D. Касательные к описанной окружности треугольника ACD в точках A и C пересекаются в точке K. Докажите, что прямая DK делит отрезок BC пополам.

ВверхВниз   Решение


Даны несколько перекрывающихся кругов, занимающие на плоскости площадь, равную 1. Доказать, что из них можно выбрать некоторое количество попарно неперекрывающихся, чтобы их общая площадь была не менее $ {\frac{1}{9}}$.

ВверхВниз   Решение


На плоскости расположено 20 точек, никакие три из которых не лежат на одной прямой, из них 10 синих и 10 красных.
Докажите, что можно провести прямую, по каждую сторону которой лежит пять синих и пять красных точек.

ВверхВниз   Решение


Автор: Иванов А.

В треугольнике ABC проведена биссектриса AD. Точки M и N являются проекциями вершин B и C на AD. Окружность с диаметром MN пересекает BC в точках X и Y. Докажите, что  ∠BAX = ∠CAY.

ВверхВниз   Решение


Пусть ABCD — пространственный четырёхугольник, точки K1 и K2 делят соответственно стороны AB и DC в отношении $ \alpha$, точки K3 и K4 делят соответственно стороны BC и AD в отношении $ \beta$. Доказать, что отрезки K1K2 и K3K4 пересекаются.

ВверхВниз   Решение


Автор: Ильичев В.

На острове Серобуромалин обитают 13 серых, 15 бурых и 17 малиновых хамелеонов. Если встречаются два хамелеона разного цвета, то они одновременно меняют свой цвет на третий (серый и бурый становятся оба малиновыми и т.п.). Может ли случиться так, что через некоторое время все хамелеоны будут одного цвета?

ВверхВниз   Решение


K членов Жюри Десятой Всероссийской олимпиады школьников по информатике решили отметить столь круглую годовщину в одном из лучших ресторанов на Невском проспекте. На десерт вниманию Жюри предложили торт, имеющий форму прямоугольной призмы с выпуклым N-угольником в основании. Жюри вооружается десертными ножами и собирается справедливо разделить торт на K частей равного объема. Ножами можно проводить прямые вертикальные разрезы от одной границы торта до другой; различные разрезы могут иметь общие точки лишь в своих концевых вершинах.

Напишите программу, помогающую членам Жюри построить требуемые K-1 разрезов.

Входные данные

В первой строке входного файла содержатся два целых числа K и N (1 ≤ K, N ≤ 50). Далее следуют N пар вещественных чисел – координаты
последовательно расположенных вершин N-угольника.

Выходные данные

Каждый из K-1 разрезов в выходном файле должен быть представлен четверкой чисел – координатами своих концов. Все числа должны быть разделены пробелами и/или символами перевода строки.

Пример входного файла

4 3
2 1
0 0.5
4 0.5

Пример выходного файла

2 1 1 0.5
2 1 2 0.5
2 1 3 0.5

ВверхВниз   Решение


Автор: Нилов Ф.

Дан четырёхугольник ABCD. Его противоположные стороны AB и CD пересекаются в точке K. Его диагонали пересекаются в точке L. Известно, что прямая KL проходит через центр тяжести вершин четырёхугольника ABCD. Докажите, что ABCD – трапеция.

ВверхВниз   Решение


Внутри остроугольного неравнобедренного треугольника $ABC$ отмечена точка $T$, такая что $\angle ATB = \angle BTC = 120^\circ$. Окружность с центром $E$ проходит через середины сторон треугольника $ABC$. Оказалось, что точки $B,T,E$ лежат на одной прямой. Найдите угол $ABC$.

ВверхВниз   Решение


Около сферы радиуса 10 описан некоторый 19-гранник. Доказать, что на его поверхности найдутся две точки, расстояние между которыми больше 21.

ВверхВниз   Решение


Рассмотрим все остроугольные треугольники с заданными стороной a и углом α.
Чему равен максимум суммы квадратов длин сторон b и c?

ВверхВниз   Решение


Два концентрических круга поделены на 2k равных секторов. Каждый сектор выкрашен в белый или чёрный цвет. Доказать, что если белых и чёрных секторов на каждом круге одинаковое количество, то можно сделать такой поворот, что по крайней мере на половине длины окружности будут соприкасаться разноцветные куски.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78198  (#1)

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов.

Прислать комментарий     Решение

Задача 78200  (#2)

Тема:   [ Центр масс ]
Сложность: 3
Классы: 11

Пусть ABCD — пространственный четырёхугольник, точки K1 и K2 делят соответственно стороны AB и DC в отношении $ \alpha$, точки K3 и K4 делят соответственно стороны BC и AD в отношении $ \beta$. Доказать, что отрезки K1K2 и K3K4 пересекаются.
Прислать комментарий     Решение


Задача 78201  (#3)

Темы:   [ Площадь круга, сектора и сегмента ]
[ Покрытия ]
Сложность: 5
Классы: 10,11

Даны несколько перекрывающихся кругов, занимающие на плоскости площадь, равную 1. Доказать, что из них можно выбрать некоторое количество попарно неперекрывающихся, чтобы их общая площадь была не менее $ {\frac{1}{9}}$.
Прислать комментарий     Решение


Задача 78202  (#4)

Темы:   [ Комплексные числа в геометрии ]
[ Выпуклые многоугольники ]
Сложность: 4
Классы: 10,11

Даны n комплексных чисел C1, C2,..., Cn, таких, что если их представлять себе как точки плоскости, то они являются вершинами выпуклого n-угольника. Доказать, что если комплексное число z обладает тем свойством, что

$\displaystyle {\frac{1}{z-C_1}}$ + $\displaystyle {\frac{1}{z-C_2}}$ + ... + $\displaystyle {\frac{1}{z-C_n}}$ = 0,

то точка плоскости, соответствующая z, лежит внутри этого n-угольника.
Прислать комментарий     Решение

Задача 78203  (#5)

Темы:   [ Концентрические окружности ]
[ Поворот (прочее) ]
Сложность: 3+
Классы: 10,11

Два концентрических круга поделены на 2k равных секторов. Каждый сектор выкрашен в белый или чёрный цвет. Доказать, что если белых и чёрных секторов на каждом круге одинаковое количество, то можно сделать такой поворот, что по крайней мере на половине длины окружности будут соприкасаться разноцветные куски.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .