ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Доказать, что из сторон произвольного четырёхугольника можно сложить трапецию. В городе Ленинграде живет более 5 миллионов человек. Докажите, что у каких-то двух из них одинаковое число волос на голове, если известно, что у любого человека на голове менее миллиона волос.
Какое минимальное количество спичек необходимо для того, чтобы выложить на плоскости N квадратов со стороной в одну спичку? Спички нельзя ломать и класть друг на друга. Вершинами квадратов должны быть точки, где сходятся концы спичек, а сторонами - сами спички. Задание Напишите программу MATCHES, которая по количеству квадратов N, которые необходимо составить, находит минимальное необходимое для этого количество спичек. Входные данные Единственная строка входного файла MATCHES.DAT содержит одно целое число N (1≤N≤109). Выходные данные Единственная строка выходного файла MATCHES.SOL должна содержать одно целое число - минимальное количество спичек требуемых для составления заданного количества квадратов. Пример входных и выходных данных
Том написал на заборе из досок слово ММО, а Гек — число 2020. Ширина каждой буквы и цифры 9 см, а ширина доски забора — 5 см. Мог ли Гек испачкать меньше досок, чем Том? (Доски расположены вертикально, а слова и числа пишутся горизонтально. Цифры и буквы пишутся через равные промежутки.) Каково наибольшее n, при котором так можно расположить n точек на плоскости, чтобы каждые 3 из них служили вершинами прямоугольного треугольника? |
Страница: 1 [Всего задач: 5]
Каково наибольшее n, при котором так можно расположить n точек на плоскости, чтобы каждые 3 из них служили вершинами прямоугольного треугольника?
Имеется бесконечная шахматная доска. Обозначим через (a, b) поле, расположенное на пересечении горизонтали с номером a и вертикали с номером b. Фишка с поля (a, b) может сделать ход на любое из восьми полей: (a ± m, b ± n), (a ± n, b ± m), где m, n – фиксированные числа, а "+" и "–" комбинируются произвольно. Сделав x ходов, фишка вернулась на исходное поле. Доказать, что x чётно.
Доказать, что из сторон произвольного четырёхугольника можно сложить трапецию.
Улитка ползёт с непостоянной скоростью. Несколько человек наблюдало за ней по очереди в течение 6 минут. Каждый начинал наблюдать раньше, чем кончал предыдущий, и наблюдал ровно 1 минуту. За эту минуту улитка проползла ровно 1 м. Доказать, что за все 6 минут улитка могла проползти самое большее 10 м.
Дан пятиугольник ABCDE.
AB = BC = CD = DE,
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке