ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дана система из n точек на плоскости, причём известно, что для любых двух точек данной системы можно указать движение плоскости, при котором первая точка перейдёт во вторую, а система перейдёт сама в себя. Доказать, что все точки такой системы лежат на одной окружности. |
Страница: 1 [Всего задач: 5]
В n мензурок налиты n разных жидкостей, кроме того, имеется одна пустая мензурка. Можно ли за конечное число операций составить равномерные смеси в каждой мензурке, то есть сделать так, чтобы в каждой мензурке было равно 1/n от начального количества каждой жидкости, и при этом одна мензурка была бы пустой. (Мензурки одинаковые, но количества жидкостей в них могут быть разными; предполагается, что можно отмерять любой объём жидкости.)
Дана система из n точек на плоскости, причём известно, что для любых двух точек данной системы можно указать движение плоскости, при котором первая точка перейдёт во вторую, а система перейдёт сама в себя. Доказать, что все точки такой системы лежат на одной окружности.
Дан треугольник ABC, причём сторона BC равна полусумме двух других сторон. Доказать, что в таком треугольнике вершина A, середины сторон AB и AC и центры вписанной и описанной окружностей лежат на одной окружности (сравните с задачей 4 для 9 класса).
Доказать, что любое чётное число 2n
Имеется бесконечное количество карточек, на каждой из которых написано какое-то натуральное число. Известно, что для любого натурального числа n существуют ровно n карточек, на которых написаны делители этого числа. Доказать, что каждое натуральное число встречается хотя бы на одной карточке.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке