Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 36]
Дана прямая
a и два непараллельных отрезка
AB и
CD по одну сторону от
неё. Найти на прямой
a такую точку
M, чтобы треугольники
ABM и
CDM
были равновелики.
Шестизначное число делится на 37. Все его цифры различны. Доказать, что из
тех же цифр можно составить и другое шестизначное число, кратное 37.
|
|
Сложность: 3 Классы: 10,11
|
Окружности
O1 и
O2 лежат внутри треугольника и касаются друг друга извне,
причём окружность
O1 касается двух сторон треугольника, а окружность
O2
-- тоже касается двух сторон треугольника, но не тех же, что
O1. Доказать,
что сумма радиусов этих окружностей больше радиуса окружности, вписанной в
треугольник.
|
|
Сложность: 3 Классы: 10,11
|
На плоскости даны три точки. Построить три окружности, касающиеся друг друга
в этих точках. Разобрать все случаи.
|
|
Сложность: 3 Классы: 10,11
|
В прямоугольном бильярде размером p×2q, где p и q – нечётные числа, сделаны лузы в каждом углу и в середине каждой стороны длины 2q. Из угла выпущен шарик под углом 45° к стороне. Доказать, что шарик обязательно попадёт в одну из средних луз.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 36]