ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Внутри круга радиуса 1 м расположены n точек. Доказать, что в круге или на его границе существует точка, сумма расстояний от которой до всех точек не меньше n метров. Решение |
Страница: << 1 2 3 4 5 >> [Всего задач: 23]
Можно ли разбить числа 1, 2, 3, ..., 33 на 11 групп, по три числа в каждой, так, чтобы в каждой группе одно из чисел равнялось сумме двух других?
12 теннисистов участвовали в турнире. Известно, что каждые два теннисиста сыграли между собой ровно один раз и не было ни одного теннисиста, проигравшего все встречи. Доказать, что найдутся такие теннисисты A, B, C, что A выиграл у B, B у C, C у A. (В теннисе ничьих не бывает.)
В угол вписаны две окружности; одна из них касается сторон угла в точках K1 и K2, а другая — в точках L1 и L2. Докажите, что прямая K1L2 высекает на этих двух окружностях равные хорды.
Дано 999-значное число. Известно, что если взять из него любые 50 последовательных цифр и вычеркнуть все остальные, то полученное число будет делиться на 250. (Оно может начинаться с нулей или просто быть нулём.) Доказать, что исходное число делится на 2999.
Страница: << 1 2 3 4 5 >> [Всего задач: 23] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|