|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Найдите все действительные корни уравнения (x + 1)21 + (x + 1)20(x – 1) + (x + 1)19(x – 1)² + ... + (x – 1)21 = 0. Дан квадратный лист бумаги со стороной 1. Отмерьте на этом листе расстояние ⅚ (лист можно сгибать, в том числе, по любому отрезку с концами на краях бумаги и разгибать обратно; после разгибания на бумаге остаётся след от линии сгиба). Определите, с какой стороны расположен руль у изображенного на рисунке автомобиля. На отрезке длиной 1 расположено несколько отрезков, полностью его покрывающих. Докажите, что можно выбросить некоторые из них так, чтобы оставшиеся по-прежнему покрывали отрезок и сумма их длин не превосходила 2. Известно, что в кадр фотоаппарата, расположенного в точке O, не могут попасть предметы A и B такие, что угол AOB больше 179o. На плоскости поставлено 1000 таких фотоаппаратов. Одновременно каждым фотоаппаратом делают по одному снимку. Доказать, что найдётся снимок, на котором сфотографировано не больше 998 фотоаппаратов. |
Страница: << 1 2 3 4 5 >> [Всего задач: 23]
Во всех клетках таблицы 100×100 стоят плюсы. Разрешается одновременно менять знаки во всех клетках одной строки или же во всех клетках одного столбца. Можно ли, пользуясь только этими операциями, получить ровно 1970 минусов?
Доказать, что если натуральное число k делится на 10101010101, то в его десятичной записи по крайней мере шесть цифр отличны от нуля.
В парке шесть узких аллей одинаковой длины, четыре из которых идут по сторонам квадрата и две по его средним линиям. По этим аллеям мальчик Коля убегает от папы и мамы. Смогут ли папа и мама поймать Колю, если он бегает втрое быстрее их (все трое всё время видят друг друга)?
В маленьком зоопарке из клетки убежала обезьяна. Её ловят два сторожа. И сторожа, и обезьяна бегают только по дорожкам. Всего в зоопарке шесть прямолинейных дорожек: три длинные образуют правильный треугольник, три короткие соединяют середины его сторон. В каждый момент времени обезьяна и сторожа видят друг друга. Смогут ли сторожа поймать обезьяну, если обезьяна бегает в 3 раза быстрее сторожей? (Вначале оба сторожа находятся в одной вершине треугольника, а обезьяна в другой.)
Страница: << 1 2 3 4 5 >> [Всего задач: 23] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|