ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В городе N с каждой станции метро на любую другую можно проехать. Доказать, что одну из станций можно закрыть на ремонт без права проезда через неё так, чтобы с любой из оставшихся станций можно было по-прежнему проехать на любую другую.

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 79244

Темы:   [ Принцип крайнего (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Деревья ]
Сложность: 3+
Классы: 10

В городе N с каждой станции метро на любую другую можно проехать. Доказать, что одну из станций можно закрыть на ремонт без права проезда через неё так, чтобы с любой из оставшихся станций можно было по-прежнему проехать на любую другую.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .