ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На пульте имеется несколько кнопок, с помощью которых осуществляется управление световым табло. После нажатия любой кнопки некоторые лампочки на табло переключаются (для каждой кнопки есть свой набор лампочек, причём наборы могут пересекаться). Доказать, что число состояний, в которых может находиться табло, равно некоторой степени числа 2.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 79382  (#1)

Темы:   [ Периодичность и непериодичность ]
[ Десятичная система счисления ]
[ Периодические и непериодические дроби ]
Сложность: 3+
Классы: 8,9,10

a1, a2, a3, ..., an, ... – возрастающая последовательность натуральных чисел. Известно, что  an+1 ≤ 10an  при всех натуральных n.
Доказать, что бесконечная десятичная дробь 0,a1a2a3..., полученная приписыванием этих чисел друг к другу, непериодическая.

Прислать комментарий     Решение

Задача 79383  (#2)

Темы:   [ Правило произведения ]
[ Разбиения на пары и группы; биекции ]
[ Комбинаторика орбит ]
[ Теорема Лагранжа ]
Сложность: 4
Классы: 9,10

На пульте имеется несколько кнопок, с помощью которых осуществляется управление световым табло. После нажатия любой кнопки некоторые лампочки на табло переключаются (для каждой кнопки есть свой набор лампочек, причём наборы могут пересекаться). Доказать, что число состояний, в которых может находиться табло, равно некоторой степени числа 2.

Прислать комментарий     Решение

Задача 79384  (#3)

Темы:   [ Целочисленные решетки (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3+
Классы: 8,9,10

На прямоугольном листе клетчатой бумаги размером m×n клеток расположено несколько квадратов, стороны которых идут по вертикальным и горизонтальным линиям бумаги. Известно, что никакие два квадрата не совпадают и никакой квадрат не содержит внутри себя другой квадрат. Каково наибольшее число таких квадратов?

Прислать комментарий     Решение

Задача 79645  (#4)

Темы:   [ Теория игр (прочее) ]
[ Наибольшая или наименьшая длина ]
[ Рекуррентные соотношения (прочее) ]
[ Процессы и операции ]
Сложность: 5
Классы: 7,8

См. задачу 79385 в) и г).

Прислать комментарий     Решение

Задача 79381  (#5)

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9,10

На хорде AB окружности K с центром в точке O взята точка C. D — вторая точка пересечения окружности K с окружностью, описанной около $ \Delta$ACO. Доказать, что CD = CB.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .