ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружности радиуса x и y касаются окружности
радиуса R, причем расстояние между точками касания равно a.
Вычислите длину следующей общей касательной к первым двум окружностям:
Восстановите треугольник ABC по прямым lb и lc, содержащим биссектрисы углов B и C, и основанию биссектрисы угла A – точке L1. Дан параллелограмм ABCD. Окружность, проходящая
через точку A, пересекает отрезки AB, AC и AD в точках P, Q и R
соответственно. Докажите, что
AP . AB = AR . AD = AQ . AC.
Диагонали AC, BD трапеции ABCD пересекаются в точке P. Описанные окружности треугольников ABP, CDP пересекают прямую AD в точках X, Y. Точка M – середина XY. Докажите, что BM = CM. Доказать, что в круг радиуса 1 нельзя поместить без наложений два треугольника, площадь каждого из которых больше 1. Существует ли треугольник, для сторон x, y, z которого выполнено соотношение x³ + y³ + z³ = (x + y)(y + z)(z + x)? Докажите, что любое аффинное преобразование
можно представить в виде композиции двух растяжений
и аффинного преобразования, переводящего любой треугольник
в подобный ему треугольник.
Натуральное число A при делении на 1981 дало в остатке 35, при делении на 1982 оно дало в остатке также 35. Каков остаток от деления числа A на 14? |
Страница: 1 2 3 4 >> [Всего задач: 17]
Натуральное число A при делении на 1981 дало в остатке 35, при делении на 1982 оно дало в остатке также 35. Каков остаток от деления числа A на 14?
Дано число, имеющее 13 разрядов. Доказать, что одну из его цифр можно вычеркнуть так, что в полученном числе количество семёрок на чётных местах будет равно количеству семёрок на нечётных местах.
Дано 10 натуральных чисел: a1 < a2 < a3 < ... < a10. Доказать, что их наименьшее общее кратное не меньше 10a1.
Дано число, имеющее нечётное число разрядов. Доказать, что одну из его цифр можно вычеркнуть так, что в полученном числе количество семёрок на чётных местах будет равно количеству семёрок на нечётных местах.
В пятиугольнике проведены все диагонали. Какие семь углов между двумя диагоналями или между диагоналями и сторонами надо отметить, чтобы из равенства этих углов друг другу следовало, что пятиугольник – правильный?
Страница: 1 2 3 4 >> [Всего задач: 17]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке