Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Окружности радиуса x и y касаются окружности радиуса R, причем расстояние между точками касания равно a. Вычислите длину следующей общей касательной к первым двум окружностям:
а) внешней, если оба касания внешние или внутренние одновременно;
б) внутренней, если одно касание внутреннее, а другое внешнее.

Вниз   Решение


Восстановите треугольник ABC по прямым lb и lc, содержащим биссектрисы углов B и C, и основанию биссектрисы угла A – точке L1.

ВверхВниз   Решение


Дан параллелограмм ABCD. Окружность, проходящая через точку A, пересекает отрезки AB, AC и AD в точках P, Q и R соответственно. Докажите, что  AP . AB = AR . AD = AQ . AC.

ВверхВниз   Решение


Диагонали AC, BD трапеции ABCD пересекаются в точке P. Описанные окружности треугольников ABP, CDP пересекают прямую AD в точках X, Y. Точка M – середина XY. Докажите, что  BM = CM.

ВверхВниз   Решение


Доказать, что в круг радиуса 1 нельзя поместить без наложений два треугольника, площадь каждого из которых больше 1.

ВверхВниз   Решение


Существует ли треугольник, для сторон x, y, z которого выполнено соотношение  x³ + y³ + z³ = (x + y)(y + z)(z + x)?

ВверхВниз   Решение


Докажите, что любое аффинное преобразование можно представить в виде композиции двух растяжений и аффинного преобразования, переводящего любой треугольник в подобный ему треугольник.

ВверхВниз   Решение


Натуральное число A при делении на 1981 дало в остатке 35, при делении на 1982 оно дало в остатке также 35. Каков остаток от деления числа A на 14?

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 79388

Тема:   [ Деление с остатком ]
Сложность: 3
Классы: 7,8,9

Натуральное число A при делении на 1981 дало в остатке 35, при делении на 1982 оно дало в остатке также 35. Каков остаток от деления числа A на 14?

Прислать комментарий     Решение

Задача 79389

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9

Дано число, имеющее 13 разрядов. Доказать, что одну из его цифр можно вычеркнуть так, что в полученном числе количество семёрок на чётных местах будет равно количеству семёрок на нечётных местах.

Прислать комментарий     Решение

Задача 79394

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 9

Дано 10 натуральных чисел:  a1 < a2 < a3 < ... < a10.  Доказать, что их наименьшее общее кратное не меньше 10a1.

Прислать комментарий     Решение

Задача 79395

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 9,10

Дано число, имеющее нечётное число разрядов. Доказать, что одну из его цифр можно вычеркнуть так, что в полученном числе количество семёрок на чётных местах будет равно количеству семёрок на нечётных местах.

Прислать комментарий     Решение

Задача 79393

Темы:   [ Пятиугольники ]
[ Правильные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9

В пятиугольнике проведены все диагонали. Какие семь углов между двумя диагоналями или между диагоналями и сторонами надо отметить, чтобы из равенства этих углов друг другу следовало, что пятиугольник – правильный?

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .