ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дано число, имеющее 13 разрядов. Доказать, что одну из его цифр можно вычеркнуть так, что в полученном числе количество семёрок на чётных местах будет равно количеству семёрок на нечётных местах.

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 79388  (#1)

Тема:   [ Деление с остатком ]
Сложность: 3
Классы: 7,8,9

Натуральное число A при делении на 1981 дало в остатке 35, при делении на 1982 оно дало в остатке также 35. Каков остаток от деления числа A на 14?

Прислать комментарий     Решение

Задача 79389  (#2)

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9

Дано число, имеющее 13 разрядов. Доказать, что одну из его цифр можно вычеркнуть так, что в полученном числе количество семёрок на чётных местах будет равно количеству семёрок на нечётных местах.

Прислать комментарий     Решение

Задача 79391  (#4)

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Иррациональные уравнения ]
Сложность: 4-
Классы: 8,9,10

Дано число x, большее 1. Обязательно ли имеет место равенство

[$\displaystyle \sqrt{[\sqrt{x}]}$] = [$\displaystyle \sqrt{\sqrt{x}}$]?

Прислать комментарий     Решение

Задача 79392  (#5)

Тема:   [ Взвешивания ]
Сложность: 4-
Классы: 8

Имеется 5 гирь. Их массы равны 1000 г, 1001 г, 1002 г, 1004 г и 1007 г, но надписей на гирях нет и внешне они неотличимы. Имеются весы со стрелкой, которые показывают массу в граммах. Как с помощью трёх взвешиваний определить гирю в 1000 г?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .